

REVISTA IBRACON DE ESTRUTURAS E MATERIAIS IBRACON STRUCTURES AND MATERIALS JOURNAL

Analysis of the nodal stresses in pile caps

Análise das tensões nodais em blocos sobre estacas

M. A. TOMAZ ^a eng.matomaz@gmail.com

> R. G. DELALIBERA ^a delalibera@ufu.br

> > J. S. GIONGO ^b jsgiongo@sc.usp.br

V. F. GONÇALVES a vitorfrg@gmail.com

Abstract

Pile caps can be dimensioned using, preferably, plastic models (strut-and-tie) and models based on the flexion theory. In order to analyze the behavior of the stresses in the lower and upper nodal regions of the cap, a theoretical analysis of the experimental results found by several researchers was made. There was a discrepancy in the results obtained and, as a result, a critical analysis carried out and a new methodology for the verification of the nodal stress near the upper zone, based on the multiaxial behavior of the concrete, is suggested.

Keywords: pile caps, strut-and-tie model, nodal stress.

Resumo

Blocos sobre estacas podem ser dimensionados utilizando-se, preferencialmente, modelos plásticos (bielas e tirantes) e modelos baseados na teoria da flexão. Com o intuito de analisar o comportamento das tensões nas regiões nodais inferior e superior do bloco, fez-se uma análise teórica dos resultados dos ensaios experimentais realizados por diversos pesquisadores. Observaram-se divergências nos resultados e, em função disto, foi feita uma análise crítica que permitiu a sugestão de uma nova metodologia para a verificação das tensões nodais junto a zona nodal superior, baseada no comportamento multiaxial do concreto.

Palavras-chave: blocos sobre estacas, modelo de bielas e tirantes, tensões nodais.

Universidade Federal de Uberlândia, Faculdade de Engenharia Civil, Uberlândia, MG, Brasil;
 Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Engenharia de Estruturas, São Carlos-SP, Brasil

Received: 17 May 2017 • Accepted: 25 Aug 2017 • Available Online: 23 Nov 2018

This is an open-access article distributed under the terms of the Creative Commons Attribution License

1. Introdução

Para o dimensionamento de blocos sobre estacas, pode-se adotar modelos de cálculo tridimensionais (lineares ou não) e modelos de bielas e tirantes, sendo este último o mais indicado por considerar regiões de descontinuidades de tensões.

O modelo de bielas e tirantes é um método de cálculo baseado no teorema do limite superior, utilizando conceito de plasticidade e consiste no dimensionamento por meio da idealização de uma treliça espacial, composta por bielas (representações dos campos de compressão), tirantes (representações dos campos de tração) e nós (volume de concreto cuja finalidade é transferir as tensões entre bielas e tirantes, entre bloco e estacas e entre pilar e bloco). O dimensionamento por este modelo consiste na verificação das tensões que surgem na região de contato entre pilar/bloco (zona nodal superior) e bloco/estaca (zona nodal inferior).

Blévot [1] estudou o comportamento de blocos sobre três e quatro estacas, propondo equacionamento para os modelos. Posteriormente, Blévot e Frémy [2] aprofundaram o estudo a respeito de blocos, chegando à conclusão que, para garantir a segurança do element, o ângulo de inclinação entre as bielas e a horizontal deve estar entre certo limite. Além disto os autores propuseram valores limites para as tensões nas regiões nodais. Devido à sua importância e abrangência, tais trabalhos nortearam todos os trabalhos acerca de blocos sobre estacas.

Desde então, o assunto é amplamente estudado e diversos pesquisadores propuseram diferentes valores para os limites das tensões nodais, como também, diferentes maneiras de aplicar o modelo de bielas e tirantes.

1.1 Justificativa

A ABNT NBR 6118:2014 [3] não apresenta critério específico para o dimensionamento de blocos sobre estacas, contudo, indica o uso do modelo de bielas e tirantes por idealizar bem o comportamento estrutural dos blocos. De acordo com a ABNT NBR 6118:2014 [3], as tensões que surgem nas regiões nodais devem ser limitadas. Entretanto, existem muitas divergências em relação aos critérios usados pelas normas brasileiras e internacionais para definir o limite destas tensões e qual é a forma e a área das zonas nodais inferior e superior.

A norma brasileira traz parâmetros para a verificação das tensões mas não especifica qual modelo de bielas e tirantes deve ser adotado para o cálculo dessas tensões, deixando livre ao engenheiro a escolha do modelo mais adequado.

Assim, esse trabalho justifica-se pelas incertezas ainda existentes sobre o dimensionamento e verificação de blocos sobre estacas.

1.2 Objetivo

Este trabalho teve como objetivo avaliar as tensões nodais obtidas por meio de ensaios experimentais, comparando-as com os limites normativos existentes, a fim de realizar uma análise comparativa entre tais limites. Além disto, foram utilizados modelos propostos por diferentes autores para o cálculo das tensões nodais. Por fim, teve-se o objetivo de apresentar um critério que considere o efeito multiaxial do concreto junto à zona nodal superior.

2. Resultados experimentais utilizados

Primeiramente fez-se a coleta do maior número possível de dados experimentais quanto as propriedades geométricas e físicas dos blocos (dimensões, distância entre os centros das estacas, seções transversais da estaca e do pilar, força aplicada ao pilar em relação a qual surgiu a primeira fissura e taxas das armaduras dos pilares) e as forças últimas para cada bloco ensaiado e seus respectivos valores de resistência à compressão do concreto (f_c). Foram considerados apenas os blocos com ligações monolíticas, ou seja, blocos que apresentavam cálice de fundação foram descartados.

Adebar et al. [4] ensaiou seis blocos, sendo que cinco eram apoiados sobre quatro estacas e apenas um apoiado sobre seis estacas, ver Figura [1]. Os blocos sobre quatro estacas possuem

Figura 1

Modelos ensaiados por Adebar et al. [4]

Equilíbrio das forças na região nodal inferior para cálculo de $\rm R_{st}$ (resultante no tirante) e $\rm R_{cc}$ (resultante na biela)

geometria hexagonal e, portanto, duas direções (por isso a indição de valores na direção *x* e *y*). Como o modelo C possui seis estacas, a indição de θ_x refere-se ao ângulo da biela relativa a estaca

Tabela 1

Propriedades dos blocos analisados por Mautoni [5]

mais afastada e θ_y refere-se ao ângulo da biela relativa a estaca mais próxima.

Os ângulos adotados foram aqueles descritos como sendo os ângulos observados nos ensaios. Nos casos em que não foi possivel obter o ângulo experimentalmente, foi traçado uma linha unindo o centro de gravidade da seção do pilar até o centro de gravidade da seção da estaca. É importante salientar que essa hipótese da consideração do ângulo de inclinação da biela em relação ao plano horizontal diverge do modelo proposto por Blévot e Frémy [2]. Os pesquisadores franceses consideram que o início da biela junto à zona nodal superior se dê à ¼ da dimensão do pilar na direção considerada, medido a partir da face do pilar.

Os dados coletados para a análise foram extraídos dos trabalhos de Adebar et al. [4], Mautoni [5], Fusco [6], Chan e Poh [7], Miguel [8], Delalibera e Giongo [9], Barros [10], Munhoz [11], Mesquita [12] e Cao e Bloodworth [13] e são mostrados nas Tabelas [1] a [10].

Também é importante esclarecer que os ensaios experimentais de Blévot e Frémy [2] não foram considerados nesse trabalho em função do grande número de ensaios. Portanto, os autores deste artigo decidiram elaborar um artigo semelhante a este, considerando apenas os ensaios de Blévot e Frémy [2].

O estudo desenvolvido teve o objetivo de calcular as tensões nodais e, para tal, utilizaram-se três modelos difertentes: Blévot e

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Seção da estaca (cm×cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c,exp} (MPa)
B1-1	2	23	50	10×15	31	15×15	-	56,02	21,50
B2-1	2	23	50	10×15	31	15×15	-	26,02	21,50
B1-2	2	23	50	10×15	32	15×15	-	55,18	15,00
B2-2	2	23	50	10×15	32	15×15	-	55,18	15,00
B1-A	2	23	50	10×15	32	15×15	-	55,18	32,30
B2-A	2	23	50	10×15	32	15×15	-	55,18	32,30
B1-B	2	20	50	10×15	32	15×15	-	51,34	32,00
B2-B	2	20	50	10×15	32	15×15	-	51,34	32,00
B1-4A	2	20	50	10×15	32	15×15	-	51,34	29,50
B2-4A	2	20	50	10×15	32	15×15	-	51,34	29,50
B1-4B	2	20	50	10×15	32	15×15	-	51,34	27,80
B2-4B	2	20	50	10×15	32	15×15	-	51,34	27,80
B1-4C	2	20	50	10×15	32	15×15	-	51,34	22,20
B2-4C	2	20	50	10×15	32	15×15	-	51,34	22,20
D1	2	21	50	10×15	35	15×15	-	50,19	22,90
D2	2	21	50	10×15	35	15×15	-	50,19	22,90
F1	2	20	50	10×15	40	15×15	-	45,00	23,60
F2	2	20	50	10×15	40	15×15	-	45,00	23,60
E1	2	20	50	10×15	45	15×15	-	41,63	19,50
G1	2	20	50	10×15	45	15×15	-	41,63	24,30

Nota: todos os blocos possuíam 15 cm de largura.

Tabela 2

Propriedades dos blocos analisados por Fusco [6]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Seção da estaca (cm×cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c,exp} (MPa)
A-1	2	250	800	10×10	500	20×20	-	48,00	27,20
B-1	2	250	800	10×10	500	20×20	-	48,00	23,90
C-1	2	250	800	10×10	500	20×20	-	48,00	23,90

Nota: todos os blocos possuiam 150 cm de largura.

Frémy [2], Schlaich e Schäfer [14] e Fusco [15]. Os modelos são baseados nas forças atuantes nas bielas e/ou na reação das estacas. Para calcular tais forças, fêz-se o equilíbrio da região nodal conforme é mostrado na Figura [2]. A presença de momento fletor na base do pilar foi estudada por Delalibera e Giongo [9].

Fazendo o equilíbrio das forças nas direções x e y, obtém-se as seguintes equações:

$$R_{est} = \frac{F_{u,exp}}{n^{\circ} \text{ estacas}}$$
(1)

$$R_{est} = R_{cc} \cdot sen$$
 (2)

$$R_{st} = R_{cc} \cdot \cos(\theta)$$
(3)

sendo que:

 $F_{u,exp}$ é a força última experimental aplicada ao pilar;

 R_{est}^{i} é a reação de $F_{u,exp}$ em cada estaca;

 R_{cc} é a resultante no concreto comprimido (resultante na biela);

 ${\sf R}_{{}_{st}}$ é a resultante no aço tracionado (resultante no tirante) e;

 $\boldsymbol{\theta}$ é o ângulo de inclinação da biela.

A equações [1] e [2] foram usadas para determinar as tensões atuantes nas bielas e nos nós de acordo com cada modelo.

A_c A_{est} A_{est} A_{est} A_{est}

Figure 3

Representação das áreas da estaca (A_{est}) e do pilar (A_c) rebatidas, adaptado de Blévot e Frémy [2]

Tabela 3

Propriedades dos blocos analisados por Adebar et al. [4]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Diâmetro da estaca (Ø cm)	Dist. entre estacas x (cm)	Dist. entre estacas y (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ _x (°)	θ _x (°)	f _{c,exp} (MPa)
A	4	60	-	20	156	90	30×30	0,891	37,57	53,13	24,80
В	4	60	-	20	156	90	30×30	0,891	37,57	53,13	24,80
С	6	60	260	20	90	90	30×30	0,891	30,81	53,13	27,10
D	4	60	-	20	156	90	30×30	0,891	37,57	53,13	30,30
E	4	60	-	20	156	90	30×30	0,891	37,57	53,13	41,10
F	4	60	-	20	156	90	30×30	0,891	37,57	53,13	30,30

Nota: O bloco C era um bloco retangular com 170 cm de largura, os demais blocos possuiam geometria hexagonal conforme Figura [1].

Tabela 4

Propriedades dos blocos analisados por Chan e Poh [7]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Seção da estaca (cm×cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c,exp} (MPa)
А	4	40	100	15×15	60	20×20	-	43,31	39,70
В	4	40	100	15×15	60	20×20	-	43,31	38,30
С	4	30	100	15×15	60	20×20	-	35,26	36,40

Nota: os blocos possuiam 100 cm de largura.

Tabela 5

Propriedades dos blocos analisados por Miguel [8]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Diâmetro da estaca (Ø cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c,exp} (MPa)
B20A1/1	3	60	-	20	96	35×35	9,816	52,00	27,40
B20A1/2	3	60	-	20	96	35×35	9,816	52,00	33,00
B20A2	3	60	-	20	96	35×35	9,816	52,00	35,50
B20A3	3	60	-	20	96	35×35	9,816	52,00	37,90
B20A4	3	60	-	20	96	35×35	9,816	52,00	35,60
B30A1	3	60	-	30	96	35×35	9,816	52,00	31,00
B30A2	3	60	-	30	96	35×35	9,816	52,00	40,30
B30A3	3	60	-	30	96	35×35	9,816	52,00	24,50
B30A4	3	60	-	30	96	35×35	9,816	52,00	24,60

2.1 Cálculo das tensões atuantes

Blévot e Frémy [2] apresentam formulação simples para o cálculo das ten-

sões nodais. O modelo contempla apenas o valor da força aplicada no pilar, da área da seção transversal do pilar e da área da seção transversal da estaca, ambas rebatidas no sentido da biela, conforme a Figura [3].

Tabela 6

Propriedades dos blocos analisados por Delalibera e Giongo [9]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Seção da estaca (cm×cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c,exp} (MPa)
B35P25E25 e 0	2	35	117,50	25×25	62,50	25×25	1,0053	45,00	40,60
B35P25E25 e 2,5	2	35	117,50	25×25	62,50	25×25	1,0053	45,00	40,60
B35P25E25 e 0 _{AswC}	2	35	117,50	25×25	62,50	25×25	1,0053	45,00	32,80
B35P25E25 e 0A _{sw0}	2	35	117,50	25×25	62,50	25×25	1,0053	45,00	32,80
B35P25E25 e 0CG	2	35	117,50	25×25	62,50	25×25	1,0053	45,00	28,90
B45P25E25 e 0	2	45	117,50	25×25	62,50	25×25	2,7489	54,50	31,00
B45P25E25 e 5	2	45	117,50	25×25	62,50	25×25	2,7489	54,50	31,00
B45P25E25 e 0A _{swC}	2	45	117,50	25×25	62,50	25×25	2,7489	54,50	32,40
B45P25E25 e 0A _{sw0}	2	45	117,50	25×25	62,50	25×25	2,7489	54,50	32,40
B45P25E25 e 0CG	2	45	117,50	25×25	62,50	25×25	2,7489	54,50	28,90
B35P50E25 e 0	2	35	117,50	25×25	62,50	25×50	0,87965	53,10	35,80
B35P50E25 e 12,5	2	35	117,50	25×25	62,50	25×50	0,87965	53,10	35,10
B45P50E25 e 0	2	45	117,50	25×25	62,50	25×50	1,3745	61,80	35,80
B45P50E25 e 12,5	2	45	117,50	25×25	62,50	25×50	1,3745	61,80	35,10

Nota: os blocos possuíam 25 cm de largura.

Tabela 7

Propriedades dos blocos analisados por Barros [10]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Seção da estaca (cm×cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c.exp} (MPa)
SR/M1	2	70	185	15×15	125	15×15	2,181	37,30	33,10
CR/M8	2	61	170	15×15	110	15×15	2,181	66,50	33,10

Nota: os blocos possuíam 60 cm de largura.

Tabela 8

Propriedades dos blocos analisados por Munhoz [11]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Seção da estaca (cm×cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c,exp} (MPa)
B110P125R1	2	40	110	12,5×12,5	60	12,5×12,5	5,12	56,30	30,47
B110P125R25	2	40	110	12,5×12,5	60	12,5×12,5	5,12	53,20	30,47
B110P125R4	2	40	110	12,5×12,5	60	12,5×12,5	5,12	43,90	30,47
B115P125R1	2	40	115	12,5×12,5	65	12,5×25	5,12	53,00	30,47
B115P125R25	2	40	115	12,5×12,5	65	12,5×25	5,12	49,30	30,47
B115P125R4	2	40	115	12,5×12,5	65	12,5×25	5,12	57,40	30,47
B120P125R1	2	40	120	12,5×12,5	70	12,5×37,5	4,267	55,70	30,47
B120P125R25	2	40	120	12,5×12,5	70	12,5×37,5	4,267	51,90	30,47
B120P125R4	2	40	120	12,5×12,5	70	12,5×37,5	4,267	55,20	30,47
B127P125R1	2	40	127	12,5×12,5	75	12,5×50	4,48	52,90	30,47
B127P125R25	2	40	127	12,5×12,5	75	12,5×50	4,48	49,60	30,47
B127P125R4	2	40	127	12,5×12,5	75	12,5×50	4,48	53,60	30,47

Nota: os blocos possuíam 15 cm de largura.

Tabela 9

Propriedades dos blocos analisados por Mesquita [12]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Seção da estaca (cm×cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c23,exp} (MPa)		
Μ	2	30	100	20×20	50	20×20	8,043	56,31	42,21		
Nota: as blocas											

Nota: os blocos possuíam 50 cm de largura; o valor de fc23,exp corresponde à resistência do concreto aos 23 dias

Propriedades dos blocos analisados por Cao e Bloodworth [13]

Modelo ensaiado	N° de estacas	Altura (cm)	Comp. (cm)	Diâmetro da estaca (Ø cm)	Dist. entre estacas (cm)	Seção do pilar (cm×cm)	Taxa de armadura do pilar (%)	θ (°)	f _{c,exp} (MPa)
B4A1	4	23	110	13	80	20×50	-	24,98	20,30
B4A2	4	23	95	13	65	20×50	-	29,07	21,80
B4A3	4	23	85	13	55	20×50	-	32,43	24,30
B4A4	4	23	80	13	50	20×50	-	34,32	24,40
B4A5	4	23	70	13	40	20×50	-	38,52	23,00
B4B2	4	23	95	13	65	20×65	-	26,84	25,60
B4B3	4	23	95	13	65	20×75	-	25,16	24,70

Nota: os 5 primeiros modelos possuíam 50 cm de largura, os demais tinham 65 cm e 75 cm de largura, respectivamente.

O valor da tensão nodal superior (tensão de contato entre pilar/ bloco) é calculado por meio da equação [4], ao passo que, as tensões nodais para a zona nodal inferior (tensão de contato entre bloco/estaca) são calculadas pelas equações [5], [6] e [7] para blocos sobre duas, três e quatro estacas, respectivamente.

$$\sigma_{\rm ZNS} = \frac{F_{\rm u,exp}}{A_{\rm c} \cdot {\rm sen}^2(\theta)} \tag{4}$$

$$\sigma_{zni} = \frac{F_{u,exp}}{2 \cdot A_{est} \cdot sen^2(\theta)}$$
(5)

$$\sigma_{\text{zni}} = \frac{F_{\text{u,exp}}}{3 \cdot A_{\text{est}} \cdot \text{sen}^2(\theta)}$$
(6)

$$\sigma_{\rm zni} = \frac{F_{\rm u,exp}}{4 \cdot A_{\rm est} \cdot {\rm sen}^2(\theta)}$$
(7)

sendo que:

F_{u.exp} é a força última experimental aplicada ao pilar;

A é a área da seção transversal do pilar;

A_{est} é a área da seção transversal da estaca e;

 θ é o ângulo de inclinação da biela.

Schlaich e Schäfer [14] propuseram uma formulação mais precisa, em que é considerado o tipo de nó da treliça idealizada. Os autores diferenciam os nós existentes de acordo com as tensões atuantes e a presençã ou não de barras ancoradas. Dessa forma, a região nodal superior é representada pela Figura [4], nó sujeito apenas à tensão de compressão, e a região nodal inferior é representada pela Figura [5], nó onde se ancoram as barras e, portanto, com incidência de forças de tração.

A análise da Figura [4] sugere que o nó superior está sujeito ao

Figura 4

Descrição de nó sujeito apenas a tensões de compressão, adaptado segundo Schlaich e Schäfer [14] estado triplo de tensões, uma vez que o volume de concreto delimitado por a₀ está sujeito a forças de compressão atuantes em direções distintas. De acordo com Schlaich e Schäfer [14], é conveniente escolher o valor de a₀ como apresentado pela equação [8].

$$a_0 \ge a_1 \cdot \cos(\theta_2) \cdot \operatorname{sen}(\theta_2) = a_1 \cdot \cos(\theta_3) \cdot \operatorname{sen}(\theta_3)$$
(8)

Entretanto, não é apresentado um valor limte para a_0 . O cálculo das tensões nodais superiores e inferiores é feito utilizando as equações [9] e [10], respectivamente.

$$\sigma_{\rm ZRS} = \frac{F_{\rm u,exp}}{a_1 \cdot b} \tag{9}$$

$$\sigma_{zni} = \frac{\frac{R_{est}}{A_{est}}}{\left[1 + \left(\frac{u \cdot \cot g(\theta)}{a_1}\right)\right] \cdot \operatorname{sen}^2(\theta)}$$
(10)

sendo que:

F_{u exp} é a força última experimental aplicada ao pilar;

R_{est} é a reação de F_{u,exp} em cada estaca;

A_{est} é a área da seção transversal da estaca;

a, é a área de contribuição junto à zona nodal superior;

 $a_1 é$ a dimensão do pilar ou da estaca medida no sentido da biela; b é a dimensão do pilar medida no sentido perpendicular da biela; u é a altura em que as barras longitudinais estão distribuídas considerando uma camada de cobrimento superior e;

 $\boldsymbol{\theta}$ é o ângulo de inclinação da biela.

Diferentemente dos outros autores, Fusco [15] propõe que a taxa

Figura 5 Descrição de nó com barras ancoradas, adaptado segundo Schlaich e Schäfer [14]

de armadura do pilar influencia no modo como é transferida a força de compressão do pilar para o bloco.

Como mostra a Figura [6], Fusco [15] analisa a tensão de compressão em uma área de concreto ampliada $A_{c,Amp}$, distante um valor *x* do topo do bloco.

Essa área ampliada é aproximadamente nove vezes maior do que a área da seção do pilar e sua posição depende apenas da taxa de armadura do pilar. Como mostrado na Tabela [21], quanto maior for a taxa de armadura presente no pilar, mais distante da face superior é a área $A_{c,Amp}$. O valor de *x* é apenas indicativo da posição da área ampliada em relação a face superior do bloco, uma vez que a posição de *x* não interfere no valor de $A_{c,Amp}$.

Outro aspecto importante é que Fusco [15] indica que a tensão na zona nodal inferior está dentro dos limites aceitáveis baseando-se na tensão atuante na estaca e, assim, com as equações [11] e [12] calculam-se as tensões nas zonas nodais superior e inferior, respectivamente.

$$\sigma_{\rm ZNS} = \frac{\sigma_{\rm cv,d}}{{\rm sen}^2(\theta)} \tag{11}$$

$$\sigma_{\rm zni} = \frac{R_{\rm est}}{1.4 \cdot A_{\rm est}}$$
(12)

sendo que: $\sigma_{cv:d}$ é a tensão vertical atuante na profundidade x do

topo do bloco, calculada por $\frac{F_{u,exp}}{A_{c,Amp}}$;

 $\label{eq:Full_exp} \begin{array}{l} \mathsf{F}_{\mathsf{u},\mathsf{exp}} \ \acute{e} \ a \ a \ carga \ \acute{u}ltima \ aplicada \ ao \ pilar; \\ \mathsf{A}_{\mathsf{c},\mathsf{Amp}} \ \acute{e} \ a \ \acute{area} \ da \ seção \ transversal \ do \ pilar \ ampliada \ na \ profundidade \ x \ em \ relação \ ao \ topo \ do \ bloco; \end{array}$

 ${\sf R}_{_{\rm est}}$ é a reação atuante na estaca;

 ${\rm A}_{\rm \scriptscriptstyle est}$ é a área da seção transversal da estaca e;

 $\boldsymbol{\theta}$ é o ângulo de inclinação da biela.

2.2 Limites dos valores das tensões nodais

Como o intuito do trabalho é comparar os modelos de cálculo das tensões com os limites indicados pelas normas, foram considerados os limites propostos pelos autores Blévot e Frémy [2], Schlaich e Schäfer [14] e Fusco [15], bem como os limites propostos pelas normas ABNT NBR 6118:2014 [3], EHE-1998 [16], ACI 318-14 [17], CEB-*fib* [18] e CEB-*fib* [19].

Como se tratam de dados experimentais, não foi considerado o coeficente γ_c de minoração da resistência do concreto, sendo que

este é usado apenas para projeto. Da mesma forma, não foi considerado o efeito Rüsch e o coeficiente α_{v2} pois as forças aplicadas nos modelos até as suas ruínas não foram de longa duração.

A Tabela [22] mostra todos os limites considerados para a análise em função dos seguintes tipos de nós:

Nó CCC – bielas prismáticas;

Nó CCT – bielas atravessadas por tirante único e;

■ Nó CTT ou TTT – bielas atravessadas por mais de um tirante. Por considerar que o concreto na região de contato entre pilar/bloco esteja no estado triplo de tensões, é proposto pelos autores deste trabalho que o limite de tensão para a zona nodal superior seja igual à resistência no estado triplo de tensões indicada pela ABNT NBR 6118:2014 [3]. Estando o concreto submetido ao estado triplo de tensões, com $\sigma_3 \ge \sigma_2 \ge \sigma_1$, considera-se o seguinte limite:

$$\sigma_3 = f_{ck} + 4 \cdot \sigma_1 \tag{13}$$

sendo que:

 $\sigma_1 \ge -f_{ctk}$ (sendo as tensões de tração consideradas negativas). Desta maneira, o valor limite para a tensão na zona nodal superior é um valor maior do que o valor proposto (para nós CCC) pela ABNT NBR 6118:2014 [3].

Por fim, os autores fazem uma observação em relação aos limites apresentados. O livro *ABNT NBR 6118:2014 Comentários e Exemplos de Aplicação* [20], editado pelo Instituto Brasileiro do Concreto (IBRACON), equivoca-se a respeito dos limites estabelecidos por Blévot e Frémy [2].

Na publicação é dito que os limites para as tensões nodais, tanto superior quanto inferior, dependem de um fator α , e que tal fator depende do número de estacas no qual o bloco é apoiado. O livro considera que o valor α seja aplicado tanto para a zona nodal superior, quanto para a zona nodal inferior.

De acordo com Blévot e Frémy [2], o valor de α deverá ser aplicado apenas para a zona nodal superior, como exposto na Tabela [22].

3. Resultados e discussões

Para cada bloco ensaiado por cada um dos autores citados extraiu-se a força última experimental e o ângulo de inclinação das bielas. Com essas informações, aplicou-se as equações [1], [2] e [3] para encontrar as forças de reação na estaca, nas bielas e nos tirantes que atuaram nos modelos. Os resultados dessa etapa de cálculo são mostrados nas Tabelas [11] a [20].

Assim, com tais forças últimas, é possível aplicar os modelos para cálculo das tensões nodais e comparar com cada um dos limites apresentados pela Tabela [22].

Analisando atentamente a Tabela [22] nota-se que, após excluir os coeficientes de ponderações, muitos limites tornaram-se iguais. Assim, pode-se verificar que um dos fatores que provocam a discrepância entre os limites são os coeficientes de segurança que cada norma e autores adotam.

Os resultados obtidos para as tensões atuantes e tensões limites para a situação última dos ensaios, tanto para a zona nodal superior (σ_{zns}) quanto para a zona nodal inferior (σ_{zni}), de cada autor, de acordo com as equações apresentadas, estão mostrados nas Tabelas [23] a [33].

Para facilitar o entendimento, as Figuras [7] a [26] mostram, para cada autor, no eixo x o modelo ensaiado e no eixo y os valores das tensões calculadas por cada um dos métodos. As linhas horizontais representam os valores médios das tensões limites em kN/cm². As figuras [27] e [28] mostram todos os modelos.

A análise dos gráficos confirma a discrepância entre os limites, entretanto, os limites para a zona nodal inferior são mais próximos do que os limites da zona nodal superior para todos os blocos. Para os blocos ensaiados por Mautoni [5], observa-se que os limites estabelecidos por Schlaich e Schäfer [14] e pelo CEB-*fib* [19] apresentam valores mais próximos do valor médio, enquanto que para a zona nodal superior, as tensões são melhores representadas tanto pelos limites de Schlaich e Schäfer [14] quanto pelos limites do CEB-*fib* [19] e do ACI 318-14 [17].

O mesmo raciocínio pode ser expandido para os demais casos,

exceto para os blocos ensaidos por Adebar et al. [4]. O fato de dispor as estacas com distâncias diferentes em *x* e em *y*, gerou variações consideráveis nas tensões calculadas.

A consideração do estado multiaxial de tensões se mostrou coerente em todos os casos, sendo o valor calculado próximo ao valor estabelecido por Schlaich e Schäfer [14].

Em alguns casos particulares como Chan e Poh [7] e Mesquita [12],

Tabela 11

Forças atuantes nos ensaios realizados por Mautoni [5]

Modelo ensaiado	F <u>r</u> (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
B1-1	368.669	508.165	254.083	306.394	171.230
B2-1	318.849	508.165	254.083	306.394	171.230
B1-2	199.280	348.741	174.371	212.412	121.301
B2-2	199.280	348.741	174.371	212.412	121.301
B1-A	348.741	474.301	237.151	288.889	164.974
B2-A	348.741	747.301	373.651	455.169	259.931
B1-B	348.741	727.373	363.687	465.746	290.949
B2-B	318.849	727.373	363.687	465.746	290.949
B1-4A	298.920	667.589	333.795	427.466	267.036
B2-4A	318.849	667.589	333.795	427.466	267.036
B1-4B	308.884	627.733	313.867	401.945	251.093
B2-4B	318.849	627.733	313.867	401.945	251.093
B1-4C	249.100	498.201	249.101	319.004	199.280
B2-4C	298.920	498.201	249.101	319.004	199.280
D1	229.172	508.165	254.083	330.741	211.735
D2	229.172	508.165	254.083	330.741	211.735
F1	229.172	478.723	239.362	338.508	239.362
F2	209.244	478.273	239.137	338.190	239.137
E1	169.388	368.669	184.335	277.460	207.376
G1	199.280	458.345	229.173	344.950	257.819

Tabela 12

Forças atuantes nos ensaios realizados por Fusco [6]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
A-1	-	393.000	196.500	264.417	176.929
B-1	150.000	400.000	200.000	269.127	180.081
C-1	150.000	400.000	200.000	269.127	180.081

Tabela 13

Forças atuantes nos ensaios realizados por Adebar et al. [4]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est;x} (kN)	R _{est;y} (kN)	R _{cc;x} (kN)	R _{cc;y} (kN)	R _{st;x} (kN)	R _{st;y} (kN)
A	-	1.781.000	445.250	445.250	730.264	556.563	578.825	333.938
В	-	2.189.000	547.250	547.250	897.557	684.063	711.425	410.438
С	-	2.892.000	723.000	723.000	1.411.702	1.411.702	1.212.507	1.212.507
D	-	3.222.000	805.500	805.500	1.321.118	1.006.875	1.407.150	604.125
E	-	4.709.000	1.177.250	1.177.250	1.930.833	1.471.563	1.530.425	882.938
F	-	3.026.000	756.500	756.500	1.240.752	945.625	983.450	567.375

Tabela 14

Forças atuantes nos ensaios realizados por Chan e Poh [7]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
A	840.000	1.230.000	307.500	448.286	326.197
В	900.000	1.250.000	312.500	455.576	331.501
С	450.000	870.000	217.500	376.762	307.641

Analysis of the nodal stresses in pile caps

Forças atuantes nos ensaios realizados por Miguel [8]

Modelo ensaiado	F _{r.} (kN)	F _{u.exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
B20A1/1	1.050.000	1.512.000	504.000	639.858	393.768
B20A1/2	900.000	1.648.000	549.334	697.114	429.186
B20A2	1.050.000	2.083.000	694.334	881.122	542.473
B20A3	1.050.000	1.945.000	648.334	822.747	506.534
B20A4	1.200.000	2.375.000	791.667	1.004.639	618.518
B30A1	900.000	1.909.000	636.334	807.519	497.158
B30A2	1.050.000	2.674.000	891.334	1.131.118	696.386
B30A3	750.000	1.938.000	646.000	819.786	504.711
B30A4	900.000	2.283.000	761.000	965.723	594.558

Tabela 16

Forças atuantes nos ensaios realizados por Delalibera e Giongo [9]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
B35P25E25 e 0	465.000	1.821.000	910.500	1.287.641	910.500
B35P25E25 e 2,5	445.000	1.688.000	844.000	1.193.596	844.000
B35P25E25 e 0A _{swC}	270.000	1.880.000	940.000	1.329.361	940.000
B35P25E25 e 0A _{sw0}	266.000	1.406.000	703.000	994.192	703.000
B35P25E25 e 0CG	315.000	1.263.000	631.500	893.076	631.500
B45P25E25 e 0	465.000	2.276.000	1.138.000	1.397.836	811.728
B45P25E25 e 5	522.000	1.972.000	986.000	1.211.130	703.307
B45P25E25 e 0A _{swC}	482.000	3.055.000	1.527.500	1.879.269	1.089.555
B45P25E25 e 0A _{sw0}	305.000	2.090.000	1.045.000	1.283.602	745.391
B45P25E25 e 0CG	473.000	2.270.000	1.135.000	1.394.151	809.588
B35P50E25 e 0	450.000	3.877.000	1.938.500	2.424.081	1.455.467
B35P50E25 e 12,5	585.000	3.202.000	1.601.000	2.002.039	1.202.065
B45P50E25 e 0	851.000	4.175.000	2.087.500	2.368.651	1.119.308
B45P50E25 e 12,5	477.000	3.386.000	1.693.000	1.921.018	907.779

Tabela 17

Forças atuantes nos ensaios realizados por Barros [10]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
SR/M1	210.000	756.750	378.000	409.739	158.121
CR/M8	200.000	725.000	362.500	395.285	157.619

Tabela 18

Forças atuantes nos ensaios realizados por Munhoz [11]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
B110P125R1	225.000	431.110	215.555	259.095	143.757
B110P125R25	198.000	577.080	288.540	360.346	215.855
B110P125R4	240.000	590.730	295.365	425.965	306.930
B115P125R1	158.000	712.670	356.335	446.180	268.518
B115P125R25	148.000	736.020	368.010	485.415	316.539
B115P125R4	154.000	763.640	381.820	453.224	244.184
B120P125R1	235.000	850.780	425.390	514.939	290.181
B120P125R25	198.000	807.130	403.656	512.831	316.435
B120P125R4	201.000	924.260	462.130	562.784	321.189
B127P125R1	276.000	1.028.300	514.150	644.634	388.849
B127P125R25	247.000	979.880	489.940	643.356	416.972
B127P125R4	185.000	969.350	484.675	602.160	357.333

Tabela 19

Forças atuantes no ensaio realizado por Mesquita [12]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
М	600.000	2.150.000	1.075.000	1.291.988	716.665

Forças atuantes nos ensaios realizados por Cao e Bloodworth [13]

Modelo ensaiado	F _{r.} (kN)	F _{u,exp} (kN)	R _{est} (kN)	R _{cc} (kN)	R _{st} (kN)
B4A1	-	592.000	148.000	350.497	317.717
B4A2	-	548.000	137.000	281.947	246.425
B4A3	-	919.000	229.750	428.460	361.653
B4A4	-	1.052.000	263.000	466.512	385.311
B4A5	-	1.244.000	311.000	499.370	390.703
B4B2	-	713.000	178.250	394.825	352.297
B4B3	-	769.000	192.250	452.146	409.238

as tensões para a zona nodal inferior calculadas pelo modelo de Fusco [15] ficaram muito abaixo dos valores limites, inclusive dos valores limites estipulados por Fusco [15].

Para os modelos ensaidos por Delalibera e Giongo [9], cujo nome terminam com $A_{_{SW,C}}$, as tensões atuantes foram ligeiramente maiores pois esses modelos foram detalhados com uma armadura dimensionada para absorver as tensões de tração que provocam o fendilhamento na biela de compressão. Também houve uma variabilidade nas tensões quando era considerada uma excentricidade na força última aplicada, como pode ser observado nos modelos com final e0, e2,5, e5 e e12,5.

Os valores de tensões calculados pelos três métodos propostos foram discrepantes entre si. O fato de Fusco [15] considerar a tensão na zona nodal superior calculada em uma área A_{c,Amp} fez com que os valores fossem muito menores em relação aos demais valores calculados. Tal fato se reflete nos limites. O modelo de cálculo de tensões proposto por Fusco [15] é compatível apenas com os limites por ele estabelecidos, entretanto, é necessário ressalvar que não é claro como o autor encontrou os limites propostos.

As tensões calculadas pelo método de Schlaich e Schäfer [14] são as que apresentam melhores resultados, pois os valores não demonstram grande variabilidade, o que não ocorreu com os valores calculados pelo modelo de Blévot e Frémy [2]. As tensões calculadas por Blévot e Frémy [2] estão, em muitos casos, fora dos limites apresentados.

4. Conclusões

Analisando as formulações apresentadas para o cálculo das tensões e dos valores limites, fica evidente a discrepância entre cada método. Dessa maneira, um mesmo bloco pode ser considerado "verificado" ou não dependendo do modelo empregado para analisar as tensões.

Tabela 21

Valores de x/b de acordo com Fusco [6]

Taxa de armadura do pilar (%)	1%	2 %	3%
Pilares quadrados	0.8	1.0	1.2
Pilares muito alongados	0.35	0.42	1.0

Nota: b é a menor dimensão em planta do pilar

Os valores limites médios para a zona nodal inferior estão mais próximos dos que os valores médios para a zona nodal superior, evidenciando que a maior incongruência em relação aos limites está na zona nodal superior.

A consideração do estado multiaxial do concreto leva a valores limites intermediários aos valores apresentados por Blévot e Frémy [2] e por Schlaich e Schäfer [14] que são valores maiores dos que os indicados pela ABNT NBR 6118:2014 [3], sendo o valor do estado triplo de tensão um valor mais representativo quando comparado com a tensão última da zona nodal superior.

O modelo apresentado por Fusco [15] faz considerações a respeito da zona nodal superior que não ficam muito claras, pois não há demonstração precisa para o valor limite de 2/9 de f_c . A consideração de uma área ampliada $A_{c,Amp}$, distante *x* da face superior do bloco, faz com que as tensões fiquem muito aquém quando comparadas com os demais métodos. As tensões calculadas pelo método de Fusco [15] são compatíveis apenas com os valores limites apresentados por ele e, dessa forma, não se pode aplicar os limites descritos pela ABNT NBR 6118:2014 [3] quando se calcular as tensões utilizando o modelo de Fusco [15].

O limite apresentado pela norma espanhola EHE-1998 [16], para a zona nodal superior, é muito elevado em relação aos demais limites, bem como muito superior ao valor das tensões calculadas,

Tabela 22

Tensões limites para as regiões nodais sem considerar $\gamma_{c'}$ o efeito de Rüsch e α_{v2}

Critérios	CCC	ССТ	CTT ou TTT
Blévot e Frémy [2]	1.40 f 1.75 f 2.10 f f _c ; lo	on two piles) n three piles) on four piles) y situation)	
Schlaich and Schäfer [14]	1,10 f _c	0,80 f _c	0,80 f _c
Fusco [15]	2/9 f _c	0,50 f _c	0,50 f _c
ABNT NBR 6118:2014 [2]	0,85 f _c	0,72 f _c	0,60 ff _c
EHE-1998 [16]	3,00 f _c	0,70 f _c	0,70 f _c
ACI-2014 [17]	0,85 f _c	0,68 f _c	0,51 f _c
CEB-fib [18]	0,85 f _c	0,60 f _c	0,60 f _c
CEB-fib [19]	1,00 f _c	0,75 f _c	0,75 f _c
Estado triplo de tensão	$f_{ck} + 4 f_{ctk}$	-	-

		ienso	bes aluarites	(KIN/CIII-)		
Modelo	Blévot e	Frémy [2]	Fusce	o [15]	Schlaich e	Schäfer [14]
ensaiado	$\sigma_{\sf zni}$	σ_{zns}	σ_{zni}	$\sigma_{\sf zns}$	σ_{zni}	$\sigma_{\sf zns}$
B1-1	2,46	3,28	1,21	0,36	1,55	2,26
B2-1	2,46	3,28	1,21	0,36	1,55	2,26
B1-2	1,73	2,30	0,83	0,26	1,07	1,55
B2-2	1,73	2,30	0,83	0,26	1,07	1,55
B1-A	2,35	3,13	1,13	0,35	1,46	2,11
B2-A	3,70	4,93	1,78	0,55	2,30	3,32
B1-B	3,98	5,30	1,73	0,59	2,34	3,23
B2-B	3,98	5,30	1,73	0,59	2,34	3,23
B1-4A	3,65	4,87	1,59	0,54	2,15	2,97
B2-4A	3,65	4,87	1,59	0,54	2,15	2,97
B1-4B	3,43	4,58	1,49	0,51	2,02	2,79
B2-4B	3,43	4,58	1,49	0,51	2,02	2,79
B1-4C	2,72	3,63	1,19	0,40	1,60	2,21
B2-4C	2,72	3,63	1,19	0,40	1,60	2,21
D1	2,87	3,83	1,21	0,43	1,66	2,26
D2	2,87	3,83	1,21	0,43	1,66	2,26
F1	3,19	4,26	1,14	0,47	1,70	2,13
F2	3,19	4,25	1,14	0,47	1,70	2,13
E1	2,78	3,71	0,88	0,41	1,40	1,64
G1	3,46	4,62	1,09	0,51	1,74	2,04

Tomoños atumatos (khl/om?)

Tabela 23

Tensões atuantes × Limites considerados para os ensaios de Mautoni [5]

Tensões limites (kN/cm²) ABNT NBR Blévot e Schlaich Estado Fusco EHE-1998 ACI 318-14 CEB-fib 1990 CEB-fib 2010 Frémy eSchäfer 6118:2014 triplo de [15] [16] [18] [19] [17] [2] [14] [2] tensões σ_{zni} σ_{zni} σ_{zni} σ_{zns} σ_{zni} σ_{zns} σ_{zni} σ_{zns} σ_{zni} σ_{zns} σ_{zni} σ_{zns} σ_{zns} σ_{zni} σ_{zns} σ_{zns} σ_{zns} 2,15 3,01 1,08 1,48 1,72 2,37 1,55 1,83 1,51 6,45 1,72 2,15 1,29 1,83 1,61 2,15 3,08 2,15 3,01 1,08 0,48 1,55 1,83 1,51 6,45 1,72 1,29 1,83 2,15 3,08 1,72 2,37 2,15 1,61 2,10 0,33 1,28 1,05 0,90 1,50 0,75 1,20 1,65 1,08 4,50 1,20 1,50 1,28 1,13 1,50 2,23 1,28 2,10 0,75 0,33 1,20 1,08 1,05 4,50 1,20 0,90 1,28 1,50 2.23 1,50 1,65 1,50 1,13 4,42 0,72 2,58 3,55 2,33 2,75 2,26 9,69 2,58 3,23 1,94 2,75 2,42 4,45 3,23 1,62 3,23 2,75 3,23 0,72 2,26 4,52 2,58 3,55 2,33 9,69 2,58 3,23 1,94 2,75 2,42 3,23 4,45 1,62 3,20 4,48 1,60 0,71 2,56 3,52 2,30 2,72 2,24 9,60 2,56 3,20 1,92 2,72 2,40 3,20 4,41 1,60 0,71 2,72 2,24 1,92 3,20 4,48 2,56 3,52 2,30 9,60 2,56 3,20 2,72 2,40 3,20 4,41 2,95 4,13 1,48 0,66 2,36 3,25 2,12 2,51 2,07 8,85 2,36 2,95 1,77 2,51 2,21 2,95 4,10 2,36 3,25 2,95 4,13 1,48 0,66 2,12 2,51 2,07 8,85 2,36 2,95 1,77 2.51 2.21 2,95 4,10 2,78 3,89 1,39 0,62 2,22 3,06 2,00 2,36 1,95 8,34 2,22 2,78 1,67 2,36 2,09 2,78 3,88 1,39 2,78 3,89 2,22 3,06 2,00 2,36 1,95 8,34 2,22 2,78 2,36 2,09 2,78 3,88 0,62 1,67 2,22 3,11 1,11 0,49 1,78 2,44 1,60 1,89 1,55 1,78 2,22 1,33 1,89 1,67 2,22 3,17 6,66 1,89 2,22 3,11 1,11 0,49 1,78 2,44 1,60 1,89 1,55 1,78 2,22 1,33 2,22 3,17 6,66 1.67 2,29 3,21 1,15 0,51 1,83 2,52 1,65 1,95 1,60 6,87 1,83 2,29 1,37 1,95 1,72 2,29 3,26 2,29 2,29 3,21 1,15 0,51 1,83 2.52 1,65 1,95 1,60 6,87 1,83 1,37 1,95 1.72 2,36 3,26 2,36 3,30 1,18 0,52 1,89 2,60 1,70 2,01 1,65 7,08 1,89 2,36 1,42 2,01 1,77 2,36 3,35 2,36 2,01 3,30 1,18 0,52 1,89 2,60 1,70 1,65 7,08 1,89 2,36 1,42 2,01 1,77 2,36 3,35 1,95 2,73 0,98 0,43 1,56 2,15 1,40 1,66 1,37 5,85 1,56 1,95 1,17 1,66 1,46 1,95 2,82 3,44 1,70 1,94 2,43 3,40 1,22 0,54 1,94 2,67 1,75 2,07 7,29 2,43 1,46 2,07 1,82 2,43 Média das tensões limites 2,49 3,48 1,24 0,55 1,99 2,74 1,79 2,11 1,74 7,46 1,99 2,49 1,49 2,11 1,87 2,49 3,50

Tensões atuantes × Limites considerados para os ensaios de Fusco [6]

							Tensõe	s atuan	tes (kN	/cm²)						
		Modelo ensaiado		В	lévot e l	Frémy [2	2]	Fu	usco [1	5]	Sc	hlaich e	Schäfe	er [14]		
				0	$\sigma_{\rm zni}$	σ_{zns}	5	σ_{zni}		σ_{zns}		σ_{zni}	C	⁷ zns		
			A-1	3	3,56	1,78	8	1,40		0,20		2,89	0	,98	-	
			B-1	3	3,62	1,8	1	1,43		0,20		2,95	1	,00		
			C-1	3	3,62	1,8	1	1,43		0,20		2,95	1	,00		
							Tensõ	es limite	es (kN/	cm²)						
Blév Fré	vot e emy 2]	Fu: [1	sco 5]	Schlo Sch [1	aich e läfer 4]	ABN 6118 [²	Г NBR :2014 2]	EHE- [1	1998 6]	ACI 3 [1	518-14 7]	CEB-fi [1	b 1990 8]	CEB-fi [1	b 2010 9]	Estado triplo de tensões
σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	$\sigma_{\rm zns}$
2,72	3,81	1,36	0,60	2,18	2,99	1,96	2,31	1,90	8,16	2,18	2,72	1,63	2,31	2,04	2,72	3,81
2,39	3,35	1,20	0,53	1,91	2,63	1,72	2,03	1,67	7,17	1,91	2,39	1,43	2,03	1,79	2,39	3,39
2,39	3,35	1,20	0,53	1,91	2,63	1,72	2,03	1,67	7,17	1,91	2,39	1,43	2,03	1,79	2,39	3,39
							Média	ı das tei	nsões li	mites						
2,50	3,50	1,25	0,56	2,00	2,75	1,80	2,13	1,75	7,50	2,00	2,50	1,50	2,13	1,88	2,50	3,53

Tabela 25

Tensões atuantes na direção x × Limites considerados para os ensaios de Adebar et al. [4]

							Tensõe	s atuan	tes (kN/	/cm²)						
			Modelo	В	lévot e l	rémy [2	2]	F	usco [15	5]	Sc	hlaich e	Schäfe	r [14]		
		e	ensaiado)	σ_{zni}	σ_{zns}	5	$\sigma_{\rm zni}$		$\sigma_{\rm zns}$		$\sigma_{_{\text{ZNI}}}$	c	zns		
			A _x	3	3,81	5,32	2	1,01		0,59		3,81	1,	.98		
			B _x	Z	1,69	6,54	4	1,24		0,73		2,37	2	.43		
			C _x	8	3,77	12,2	5	1,64		1,36		7,51	3	.21		
			D _x	é	5,90	9,63	3	1,83		1,07		3,49	3	.58		
			E _x	1	0,08	14,0	7	2,68		1,56		8,92	5	.23		
			F _x	e	5,48	9,04	4	1,72		1,00		3,28	3	.36		
							Tensõ	es limite	∋s (kN/c	cm²)						
Blév Fré [²	vot e emy 2]	Fu [1	sco 5]	Schlo Sch [1	aich e äfer 4]	ABN 6118 [T NBR :2014 2]	EHE- [1	-1998 6]	ACI 3 [1	818-14 7]	CEB-fi [1	b 1990 8]	CEB-fil [1	6 2010 9]	Estado triplo de tensões
σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zns}
2,48	5,21	1,24	0,55	1,98	2,73	1,49	2,11	1,74	7,44	1,49	2,48	1,49	2,11	1,86	2,48	3,50
2,48	5,21	1,24	0,55	1,98	2,73	1,49	2,11	1,74	7,44	1,49	2,48	1,49	2,11	1,86	2,48	3,50
2,71	5,69	1,36	0,60	2,17	2,98	1,63	2,30	1,90	8,13	1,63	2,71	1,63	2,30	2,03	2,71	3,79
3,03	6,36	1,52	0,67	2,42	3,33	1,82	2,58	2,12	9,09	1,82	3,03	1,82	2,58	2,27	3,03	4,20
4,11	8,63	2,06	0,91	3,29	4,52	2,47	3,49	2,88	12,33	2,47	4,11	2,47	3,49	3,08	4,11	5,54
3,03	6,36	1,52	0,67	2,42	3,33	1,82	2,58	2,12	9,09	1,82	3,03	1,82	2,58	2,27	3,03	4,20
							Média	das te	nsões lir	nites						
2,97	6,24	1,49	0,66	2,38	3,27	1,78	2,53	2,08	8,92	1,78	2,97	1,78	2,53	2,23	2,97	4,12

Tensões atuantes na direção y × Limites considerados para os ensaios de Adebar et al. [4]

		Tensõ	ões atuantes	(kN/cm²)		
Modelo	Blévot e	Frémy [2]	Fusco	o [15]	Schlaich e S	Schäfer [14]
ensaiado	σ_{zni}	σ_{zns}	σ _{zni}	$\sigma_{\sf zns}$	σ_{zni}	σ _{zns}
A	2,21	3,09	1,01	0,34	2,06	1,98
B	2,72	3,80	1,24	0,42	1,74	2,43
C _v	8,77	12,25	1,64	1,36	7,51	3,21
D	4,01	5,59	1,83	0,62	2,56	3,58
É	D _y 4,01 E _y 5,86		2,68	0,91	5,45	5,23
F,	3,76	5,25	1,72	0,58	2,41	3,36

Tensões limites (kN/cm²)

Blév Fré	vot e emy 2]	Fu: [1	sco 5]	Schlc Sch [1	aich e äfer 4]	ABN1 6118 [T NBR :2014 2]	EHE- [1	1998 6]	ACI 3 [1	18-14 7]	CEB-fil [1	b 1990 8]	CEB-fil [1	b 2010 9]	Estado triplo de tensões
σ_{zni}	$\sigma_{\sf zns}$	$\sigma_{\rm zni}$	$\sigma_{\rm zns}$	σ_{zni}	$\sigma_{\sf zns}$	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\sf zns}$	$\sigma_{\rm zni}$	$\sigma_{\rm zns}$	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	$\sigma_{\rm zns}$	σ_{zns}
2,48	5,21	1,24	0,55	1,98	3,50	1,49	2,11	1,74	7,44	1,49	2,48	1,49	2,11	1,86	2,48	3,50
2,48	5,21	1,24	0,55	1,98	3,50	1,49	2,11	1,74	7,44	1,49	2,48	1,49	2,11	1,86	2,48	3,50
2,71	5,69	1,36	0,60	2,17	3,79	1,63	2,30	1,90	8,13	1,63	2,71	1,63	2,30	2,03	2,71	3,79
3,03	6,36	1,52	0,67	2,42	4,20	1,82	2,58	2,12	9,09	1,82	3,03	1,82	2,58	2,27	3,03	4,20
4,11	8,63	2,06	0,91	3,29	5,54	2,47	3,49	2,88	12,33	2,47	4,11	2,47	3,49	3,08	4,11	5,54
3,03	6,36	1,52	0,67	2,42	4,20	1,82	2,58	2,12	9,09	1,82	3,03	1,82	2,58	2,27	3,03	4,20
			Média das tensões limites													
2,97	6,24	1,49	0,66	2,38	3,27	1,78	2,53	2,08	8,92	1,78	4,12	1,78	2,53	2,23	2,97	4,12

Tabela 27

Tensões atuantes × Limites considerados para os ensaios de Chan e Poh [7]

							Tensõe	s atuan	ites (kN)	/cm²)					-	
			Modelo	В	lévot e l	rémy [2]	F	usco [15	5]	Sc	hlaich e	Schäfe	er [14]	_	
		e	ensaiado	>	σ_{zni}	σ_{zns}	5	σ_{zni}		σ_{zns}		$\sigma_{\rm zni}$	0	[™] zns	_	
			А	2	2,90	6,54	4	0,98		0,73		2,53	3	,08		
			В		2,95	6,64	4	0,99		0,74		2,57	3	,13		
			С		2,90	6,5	3	0,69		0,73		2,42	2	.,18		
							Tensõ	es limite	əs (kN/c	cm²)						
Blév Fré [2	vot e emy 2]	Fu: [1	sco 5]	Schlo Sch [1	aich e äfer 4]	ABN 6118 [「NBR :2014 2]	EHE- [1	1998 6]	ACI 3 [1	318-14 7]	CEB-fil [1	b 1990 8]	CEB-fil [1	b 2010 9]	Estado triplo de tensões
$\sigma_{\rm zni}$	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\sf zns}$	$\sigma_{\rm zni}$	$\sigma_{\rm zns}$	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	$\sigma_{\sf zns}$
3,97	8,34	1,99	0,88	3,18	4,37	2,38	3,37	2,78	11,91	2,38	3,97	2,38	3,37	2,98	3,97	5,37
3,83	8,04	1,92	0,85	3,06	4,21	2,30	3,26	2,68	11,49	2,30	3,83	2,30	3,26	2,87	3,83	5,19
3,64	7,64	1,82	0,81	2,91	4,00	2,18	3,09	2,55	10,92	2,18	3,64	2,18	3,09	2,73	3,65	4,96
							Média	das te	nsões lir	nites						
3,81	8,01	1,91	0,85	3,05	4,19	2,29	3,24	2,67	11,44	2,29	3,81	2,29	3,24	2,86	3,81	5,17

Tensões atuantes × Limites considerados para os ensaios de Miguel [8]

		Tensi	ões atuantes	(kN/cm²)		
Modelo	Blévot a	Frémy [2]	Fusco	o [15]	Schlaich e S	Schäfer [14]
ensaiado	σ_{zni}	σ_{zns}	σ _{zni}	σ_{zns}	σ_{zni}	$\sigma_{\sf zns}$
B20A1/1	2,58	1,99	1,15	0,22	2,29	1,23
B20A1/2	2,82	2,17	1,25	0,24	2,50	1,35
B20A2	3,56	2,74	1,58	0,30	3,06	1,70
B20A3	3,32	2,56	1,47	0,28	2,95	1,59
B20A4	4,06	3,12	1,80	0,35	3,60	1,94
B30A1	3,26	2,51	0,64	0,28	1,34	1,56
B30A2	4,57	3,52	0,90	0,39	1,87	2,18
B30A3	3,31	2,55	0,65	0,28	1,36	1,58
B30A4	3,90	3,00	0,77	0,33	1,60	1,86

Tensões limites (kN/cm²)

Blév Fré [2	vot e emy 2]	Fu: [1	sco 5]	Schlo Sch [1	iich e äfer 4]	ABN1 6118 [2	[NBR :2014 2]	EHE- [1	1998 6]	ACI 3 [1	18-14 7]	CEB-fil [1	5 1990 8]	CEB-fil [1	5 2010 9]	Estado triplo de tensões
σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	$\sigma_{\sf zns}$										
2,74	4,80	1,37	0,61	2,19	3,01	1,64	2,33	1,92	8,22	1,64	2,74	1,64	2,33	2,06	2,74	3,83
3,30	5,78	1,65	0,73	2,64	3,63	1,98	2,81	2,31	9,90	1,98	3,30	1,98	2,81	2,48	3,30	4,3
3,55	6,21	1,78	0,79	2,84	3,91	2,13	3,02	2,49	10,65	2,13	3,55	2,13	3,02	2,66	3,55	4,85
3,79	6,63	1,90	0,84	3,03	4,17	2,27	3,22	2,65	11,37	2,27	3,79	2,27	3,22	2,84	3,79	5,14
3,56	6,23	1,78	0,79	2,85	3,92	2,14	3,03	2,49	10,68	2,14	3,56	2,14	3,03	2,67	3,56	4,86
3,10	5,43	1,55	0,69	2,48	3,41	1,86	2,64	2,17	9,30	1,86	3,10	1,86	2,64	2,33	3,10	4,28
4,03	7,05	2,02	0,90	3,22	4,43	2,42	3,43	2,82	12,09	2,42	4,03	2,42	3,43	3,02	4,03	5,44
2,45	4,29	1,23	0,54	1,96	2,70	1,47	2,08	1,72	7,35	1,47	2,45	1,47	2,08	1,84	2,45	3,46
2,46	4,31	1,23	0,55	1,97	2,71	1,48	2,09	1,72	7,38	1,48	2,46	1,48	2,09	1,85	2,46	3,48
							Médic	a das te	nsões li	mites						
3,22	5,64	1,61	0,72	2,58	3,54	1,93	2,74	2,25	9,66	1,93	3,22	1,93	2,74	2,42	3,22	4,43

Tensões atuantes × Limites considerados para os ensaios de Delalibera e Giongo [9]

		Tensões atu	antes (kN/ci	m²)		
Modele ensaigde	Blévot e l	Frémy [2]	Fusco	o [15]	Schlaich e S	Schäfer [14]
	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\rm zns}$
B35P25E25 e 0	2,91	5,83	1,04	0,65	2,17	2,91
B35P25E25 e 2,5	2,70	5,40	0,96	0,60	2,02	2,70
B35P25E25 e 0A _{swC}	3,01	6,02	1,07	0,67	2,24	3,01
B35P25E25 e 0A _{sw0}	2,25	4,50	0,80	0,50	1,68	2,25
B35P25E25 e 0CG	2,02	4,04	0,72	0,45	1,74	2,02
B45P25E25 e 0	2,75	5,49	1,30	0,61	2,21	3,64
B45P25E25 e 5	2,38	4,76	1,13	0,53	1,92	3,16
B45P25E25 e 0A _{swC}	3,69	7,37	1,75	0,82	2,97	4,89
B45P25E25 e 0A _{sw0}	2,52	5,05	1,19	0,56	2,03	3,34
B45P25E25 e 0CG	2,74	5,48	1,30	0,61	2,46	3,63
B35P50E25 e 0	4,85	9,70	2,22	1,08	3,86	3,10
B35P50E25 e 12,5	4,01	8,01	1,83	0,89	3,19	2,56
B45P50E25 e 0	4,30	8,60	2,39	0,96	3,64	3,34
B45P50E25 e 12,5	3,49	6,98	1,93	0,78	2,95	2,71

Tensões limites (kN/cm²)

Blév Fré [2	rot e my 2]	Fu: [1	sco 5]	Schlo Sch [1	aich e äfer 4]	ABN1 6118 [2	「NBR :2014 2]	EHE- [1	1998 6]	ACI 3 [1	18-14 7]	CEB-fil [1	b 1990 8]	CEB-fil [1	ь 2010 9]	Estado triplo de tensões
$\sigma_{\rm zni}$	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\sf zns}$	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	$\sigma_{\sf zns}$
4,06	5,68	2,03	0,90	3,25	4,47	2,92	3,45	2,84	12,18	3,25	4,06	2,44	3,45	3,05	4,06	54,8
4,06	5,68	2,03	0,90	3,25	4,47	2,92	3,45	2,84	12,18	3,25	4,06	2,44	3,45	3,05	4,06	5,48
3,28	4,59	1,64	0,73	2,62	3,61	2,36	2,79	2,30	9,84	2,62	3,28	1,97	2,79	2,46	3,28	4,51
3,28	4,59	1,64	0,73	2,62	3,61	2,36	2,79	2,30	9,84	2,62	3,28	1,97	2,79	2,46	3,28	4,51
2,89	4,05	1,45	0,64	2,31	3,18	2,08	2,46	2,02	8,67	2,31	2,89	1,73	2,46	2,17	2,89	4,02
3,10	4,34	1,55	0,69	2,48	3,41	2,23	2,64	2,17	9,30	2,48	3,10	1,86	2,64	2,33	3,10	4,28
3,10	4,34	1,55	0,69	2,48	3,41	2,23	2,64	2,17	9,30	2,48	3,10	1,86	2,64	2,33	3,41	4,28
3,24	4,54	1,62	0,72	2,59	3,56	2,33	2,75	2,27	9,72	2,59	3,24	1,94	2,75	2,43	3,24	4,46
3,24	4,54	1,62	0,72	2,59	3,56	2,33	2,75	2,27	9,72	2,59	3,24	1,94	2,75	2,43	3,24	4,46
2,89	4,05	1,45	0,64	2,31	3,18	2,08	2,46	2,02	8,67	2,31	2,89	1,73	2,46	2,17	2,89	4,02
3,58	5,01	1,79	0,80	2,86	3,94	2,58	3,04	2,51	10,74	2,86	3,58	2,15	3,04	2,69	3,58	4,88
3,51	4,91	1,76	0,78	2,81	3,86	2,53	2,98	2,46	10,53	2,81	3,51	2,11	2,98	2,63	3,51	4,80
3,58	5,01	1,79	0,80	2,86	3,94	2,58	3,04	2,51	10,74	2,86	3,58	2,15	3,04	2,69	3,58	4,88
3,51	4,91	1,76	0,78	2,81	3,96	2,53	2,98	2,46	10,53	2,81	3,51	2,11	2,98	2,63	3,51	4,80
							Média	das te	nsões lir	nites						
3,38	4,73	1,69	0,75	2,70	3,72	2,43	2,87	2,37	10,14	2,70	3,38	2,03	2,87	2,54	3,38	4,63

Tabela 30

Tensões atuantes × Limites considerados para os ensaios de Barros [10]

							Tensõe	s atuan	tes (kN	/cm²)					-	
			Modelo	В	lévot e l	Frémy [2]	F	usco [1	5]	Sc	chlaich e	e Schäfe	ər [14]	_	
		e	ensaiado)	σ_{zni}	σ_{zn}	s	σ_{zni}		$\sigma_{\sf zns}$		σ_{zni}		σ _{zns}	_	
			SR/M1		1,97	3,9	5	1,20		0,44		1,70	3	3,36		
			CR/M8		1,92	3,8	3	1,15		0,43		1,64	3	3,22		
	CR/1018 1,92 3,83 1,15 0,43 1,64 3,22 Tensões limites (kN/cm²)															
Blévot e Frémy [2]		Fu: [1	sco 5]	Schlo Sch [1	iich e äfer 4]	ABN 6118 [2	[NBR :2014 2]	EHE- [1	1998 6]	ACI 3 [1	18-14 7]	CEB-fil [1	b 1990 8]	CEB-fil [1	b 2010 9]	Estado triplo de tensões
σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	$\sigma_{\sf zns}$	σ_{zni}	σ_{zns}	$\sigma_{\sf zni}$	$\sigma_{\rm zns}$	$\sigma_{\rm zni}$	$\sigma_{\sf zns}$	σ_{zni}	$\sigma_{\sf zns}$	$\sigma_{\sf zni}$	σ_{zns}	σ_{zni}	σ_{zns}	$\sigma_{\sf zns}$
3,31	4,63	1,66	0,74	2,65	3,64	2,38	2,81	2,32	9,93	2,65	3,31	1,99	2,81	2,48	3,31	4,55
3,31	4,63	1,66	0,74	2,65	3,64	2,38	2,81	2,32	9,93	2,65	3,31	1,99	2,81	2,48	3,31	4,55
							Médic	ı das tei	nsões li	mites						
3,31	4,63	1,66	0,74	2,65	3,64	2,38	2,81	2,32	9,93	2,65	3,31	1,99	2,81	2,48	3,31	4,55

Tensões atuantes × Limites considerados para os ensaios de Munhoz [11]

		Tensões atu	iantes (kN/ci	m²)									
Madala anggiada	Blévot e	Frémy [2]	Fusco	o [15]	Schlaich e S	Schäfer [14]							
	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	σ _{zni}	σ_{zns}							
B110P125R1	1,99	3,99	0,99	0,44	1,70	2,76							
B110P125R25	2,88	5,76	1,32	0,64	2,41	3,69							
B110F125R2 2,00 5,70 1,52 0,04 2,41 5,07 B110P125R4 3,93 7,86 1,35 0,87 3,10 3,78 B115P125R1 3,58 7,15 1,63 0,79 2,99 2,28 B115P125P25 4,10 8,20 1,68 0,91 3,35 2,36													
B110P125R252,885,761,320,642,413,69B110P125R43,937,861,350,873,103,78B115P125R13,587,151,630,792,992,28B115P125R254,108,201,680,913,352,36B115P125R43,446,891,750,772,952,44B120P125P12,007,081,040,803,301,81													
B115P125R25	4,10	8,20	1,68	0,91	3,35	2,36							
B115P125R4	3,44	6,89	1,75	0,77	2,95	2,44							
B120P125R1	3,99	7,98	1,94	0,89	3,39	1,81							
B120P125R25	4,17	8,34	1,84	0,93	3,46	1,72							
B120P125R4	4,39	8,77	2,11	0,97	3,71	1,97							
B127P125R1	5,17	10,35	2,35	1,15	4,25	1,65							
B127P125R25	5,41	10,81	2,24	1,20	4,34	1,57							
B127P125R4	4.79	9,58	2,22	1,06	3,95	1.55							

Blév Fré [2	rot e my 2]	Fu: [1	sco 5]	Schl eScl [1	aich näfer 4]	ABN1 6118 [2	NBR 2014 2]	EHE- [1	1998 6]	ACI 3 [1	18-14 7]	CEB-fil [1	b 1990 8]	CEB-fi [1	b 2010 9]	Estado triplo de tensões
σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	$\sigma_{\sf zns}$								
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22
							Média	das tei	nsões lii	mites						
3,05	4,27	1,52	0,68	2,44	3,35	2,19	2,59	2,13	9,14	2,44	3,05	1,83	2,59	2,29	3,05	4,22

Tabela 32

Tensões atuantes × Limites considerados para os ensaios de Mesquita [12]

							Tensõe	s atuan	tes (kN/	/cm²)					-	
			Modelo	В	lévot e l	Frémy [2	2]	F	usco [15	5]	Sc	hlaich e	Schäfe	er [14]	_	
		-	ensaiad	0	σ_{zni}	σ_{zns}	5	σ_{zni}		$\sigma_{\sf zns}$		σ_{zni}	([™] zns	_	
			М	3	3,88	7,70	5	1,92		0,86		3,47	5	5,38		
	Tensões limites (kN/cm²)															
Blév Fré [2	rot e my 2]	Fu [1	sco 5]	Schlo Sch [1	iich e äfer 4]	ABN1 6118 [2	NBR 2014 2]	EHE- [1	1998 6]	ACI 3 [1	518-14 7]	CEB-fil [1	b 1990 8]	CEB-fil [1	6 2010 9]	Estado triplo de tensões
$\sigma_{\rm zni}$	σ_{zns}	σ_{zni}	σ_{zns}	σ_{zni}	σ_{zns}	$\sigma_{\rm zni}$	σ_{zns}	σ_{zni}	$\sigma_{\sf zns}$	σ_{zni}	σ_{zns}	σ_{zni}	$\sigma_{\rm zns}$	σ_{zni}	σ_{zns}	$\sigma_{\sf zns}$
4,22	5,91	2,11	0,94	3,38	4,64	3,04	3,59	2,95	12,66	3,38	4,22	2,53	3,59	3,17	4,22	5,68

Tensões atuantes × Limites considerados para os ensaios de Cao e Bloodworth [13]

Tensões atuantes (kN/cm²)						
Modelo ensaiado	Blévot e Frémy [2]		Fusco [15]		Schlaich e Schäfer [14]	
	σ_{zni}	$\sigma_{\sf zns}$	σ_{zni}	$\sigma_{\sf zns}$	σ_{zni}	$\sigma_{\rm zns}$
B4A1	6,25	6,64	0,80	3,69	4,09	1,18
B4A2	4,37	4,64	0,74	2,58	3,03	1,10
B4A3	6,02	6,39	1,24	3,55	4,34	1,84
B4A4	6,23	6,62	1,42	3,68	4,58	2,10
B4A5	6,04	6,41	1,67	3,56	4,61	2,49
B4B2	6,59	5,38	0,96	3,89	4,52	1,10
B4B3	8,01	5,67	1,03	4,73	5,37	1,03

Tensões limites (kN/cm²) Blévot e Schlaich ABNT NBR Estado Fusco EHE-1998 ACI 318-14 CEB-fib 1990 CEB-fib 2010 eSchäfer 6118:2014 triplo de Frémy [15] [16] [18] [19] [17] [2] [14] [2] tensões σ_{zni} σ_{zni} σ_{zni} σ_{zni} σ_{zni} σ_{zns} σ_{zni} σ_{zns} σ_{zni} σ_{zns} σ_{zns} σ_{zns} σ_{zni} σ_{zns} $\sigma_{\rm zns}$ σ_{zns} σ_{zns} 2,03 4,26 0,45 2,23 1,22 1,73 1,42 6,09 1,22 1,73 1,52 2,03 2,92 1,02 1,62 2,03 1,22 4,58 3,12 2,18 1,09 0,48 1,74 2,40 1,3 1,85 1,53 6,54 1,31 2,18 1,31 1,85 1,64 2,18 2,43 5,10 1,22 0,54 1,94 2,67 1,46 2,07 1,70 7,29 1,46 2,43 1,46 2,07 1,82 2,43 3,44 2,44 1,71 2,44 2,07 1,83 2,44 5,12 1,22 0,54 1,95 2,68 1,46 2,07 7,32 1,46 1,46 3,45 2,30 4,83 1,15 0,51 1,84 2,53 1,38 1,96 1,61 6,90 1,38 2,30 1,38 1,96 1,73 2,30 3,27 2,56 5,38 1,28 0,57 2,05 2,82 1,54 2,18 1,79 7,68 1,54 2,56 1,54 2,18 1,92 2,56 3,60 2.72 2,10 2,47 5,19 1.24 0,55 1,98 1,48 2.10 1.73 7,41 1,48 2,47 1,48 1,85 2.47 3,49 Média das tensões limites 1,76 2,34 4,92 1,17 0,52 1,88 2,58 1,41 1,99 1,64 7,03 1,41 2,34 1,41 1,99 2,34 3,33

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Figura 7

Modelos ensaiados por Mautoni [5] $\times \sigma_{zni}$

• Tensões atuantes - Schlaich e Schäfer

Modelos ensaiados por Mautoni [5] × σ_{zns}

Tensões atuantes - Blévot e Frémy

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

• Tensões atuantes - Fusco

Figura 9

Modelos ensaiados por Fusco [6] $\times \sigma_{zni}$

Figura 10

Modelos ensaiados por Fusco [6] x σ_{zns}

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco

• Tensões atuantes - Schlaich e Schäfer

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Figura 12

Modelos ensaiados por Adebar *et al.* [4] $\times \sigma_{zns}$

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Modelos ensaiados por Chan e Poh [7] × σ_{zns}

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Figura 15

Modelos ensaiados por Miguel [8] $\times \sigma_{zni}$

Modelos ensaiados por Miguel [8] × $\sigma_{z_{ns}}$

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Modelos ensaiados por Delalibera e Giongo [9] $\times \sigma_{zni}$

Active stresses - Blévot e Frémy Active stresses - Fusco Active stresses - Schlaich e Schäfer Figura 18

Modelos ensaiados por Delalibera e Giongo [9] $\times \sigma_{_{705}}$

Figura 19

Modelos ensaiados por Barros [10] × σ_{zni}

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Modelos ensaiados por Barros [10] × σ_{zns}

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Figura 21

Modelos ensaiados por Munhoz [11] × σ_{zni}

Modelos ensaiados por Munhoz [11] × σ_{zns}

Figura 24

Modelos ensaiados por Mesquita [12] × σ_{zns}

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Figura 25

Modelos ensaiados por Cao e Bloodworth [13] $\times \sigma_{zni}$

Tensões atuantes - Blévot e Frémy • Tensões atuantes - Fusco • Tensões atuantes - Schlaich e Schäfer

Figura 26

Modelos ensaiados por Cao e Bloodworth [13] × $\sigma_{_{\rm ZNS}}$

Figura 28

Modelos ensaiados x σ_{zns}

de tal modo que,deve-se ter cautela ao considerá-la pois, os blocos analisados apresentaram ruína com tensões na zona nodal superior muito menores do que o valor limite apresentado pela norma espanhola.

Avaliando os gráficos para tensões (excluindo os valores de Fusco [15]), é evidente que, para zona nodal inferior, os valores do CEB-*fib* [18] apresentam melhores resultados, enquanto para a zona nodal superior os melhores resultados limites são os indicados por Schlaich e Schäfer [14] e pelo estado triplo de tensões proposto pelos autores deste trabalho. Isso evidencia que, juntamente com a análise da Figura [4], a representação da zona nodal superior sugerida por Schlaich e Schäfer [14] é melhor caracterizada pelo estado triplo de tensões. Assim, sugere-se que, para a zona nodal superior, seja considerado o efeito do estado multiaxial de tensões.

Diferentes áreas das seções transversais de pilares, presença de armadura para resistir às tensões de tração provocada por fendilhamento, seção transversal da estaca e taxa de armadura do pilar, influenciam nos valores das tensões atuantes e não são contemplados por nenhum modelo de cálculo apresentado até o momento, sendo possível fonte de pesquisas futuras.

5. Agradecimentos

À Faculdade de Engenharia Civil vinculada à Universidade Federal de Uberlândia e à empresa Gerdau S.A., pelo apoio à pesquisa.

6. Referências bibliográficas

- BLÉVOT, J. Semelles en béton armé sur pieux. Institut de Recherches Appliquées du Béton Armé. Paris, m. 111-112, 1957.
- [2] BLÉVOT, J.; FRÉMY, R. Semelles sur pieux. Analles d'Institut Techique du Bâtiment et des Travaux Publics. Paris, v.20, n. 230, 1967, p. 223-295.
- [3] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2014). ABNT NBR 6118:2014 – Projeto de estruturas de concreto. Rio de Janeiro: ABNT 2014.
- [4] ADEBAR, P.; KUCHMA, D. COLLINS, M. P. Strut-and-tie models for design of pile caps: an experimental study. ACI Journal, v.87, 1990; p.81-91.
- [5] MAUTONI, M. Blocos sobre dois apoios, São Paulo, Grêmio Politécnico, 1972, 89 p.
- [6] FUSCO, P. B. Investigação experimental sobre o valor limite T_{wu} das tensões de cisalhamento no concreto estrutural, São Paulo, 1985.
- [7] CHAN, T. K. POH, C. K. Behavior of precast reinforced concrete pile caps. Construction and building materials, v.14, n.2, 2000; p.73-78.
- [8] MIGUEL, M. G. Análise numérica e experimental de blocos sobre três estacas, São Carlos, 2000, Tese (doutorado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, 242 p.
- [9] DELALIBERA, R. G.; GIONGO, J. S. Deformação nas diagonais comprimidas em blocos sobre duas estacas. Revista IBRACON de estruturas e materiais. V1, n.2 (junho 2008), p. 121-157.
- [10] BARROS, R. Análise numérica e experimental de blocos de

concreto armado sobre duas estacas com cálice externo, parcialmente embutido e embutido utilizado na ligação pilar-fundação, São Carlos, 2013, Tese (doutorado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, 355 p.

- [11] MUNHOZ, F. S. Análise experimental e numérica de blocos rígidos sobre duas estacas com pilares de seções quadradas e retangulares e diferentes taxas de armadura, São Carlos, 2014, Tese (doutorado) – Escola de Engenharia de São Carlos, Universiadade de São Paulo, 358 p.
- [12] MESQUITA, A. C. A influência da ligação pilar-bloco nos mecanismos de rupture de blocos de fundação sobre duas estacas, Goiânia, 2015, Dissertação (mestrado) – Universidade Federal de Goiás, 165 p.
- [13] CAO, J.; BLOODWORTH, A. G. Shear capacity of reinforced concrete pile caps. At IABSE (International Associatoin for bridge and structural engineering). Germany, 2007.
- [14] SCHLAICH, J.; SCHÄFER, K. Design and detailing of structural concrete using strut-and-tie models, The Structural Engineer, v.69, n.6, 1991, p. 113-125.
- [15] FUSCO, P. B. Técnicas de armar estruturas de concreto, 2 ed, São Paulo-SP, Editora Pini LTDA, 2013, 395 p.
- [16] COMISÍON PERMANETE DEL HERMIGÓN (1998). Ministério de Fomento. Centro de Publicaciones. Instricción de Hormigón Estructural (EHE), Madrid, 1998.
- [17] AMERICAN CONCRETE INSTITUTE 920140. Building code requirements for structural concrete (ACI 318-14). Detroit, USA.
- [18] COMITE EURO-INTERNACIONAL DU BÉTON (1990). CEB-FIB Model Code. Paris, 1990.
- [19] COMITE EURO-INTERNACIONAL DU BÉTON (2010). CEB-FIB Model code prepared by special activity group 5. Paris, 2010.
- [20] INSTITUTO BRASILEIRO DO CONCRETO. ABNT NBR 6118:2014 Comentários e Exemplos de Aplicação. 1 ed, São Paulo-SP, 2015, 480 p.