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Abstract  

Resumo

In this paper a numerical model with strong discontinuities is presented to address fracture problems in quasi-brittle materials. A non-symmetrical 
statically and kinematically consistent formulation is implemented. The strong discontinuity in the displacement field is represented using the el-
emental enrichment finite element method (E-FEM). In other words, the strong discontinuity is introduced into the finite element and the additional 
degrees of freedom are condensed at the element level, allowing the implementation into existing computational codes. Two constitutive models 
are used to analyze the behavior of the cracked zone, linear and exponential. The exponential model results are closer to those obtained in ex-
perimental data and representative numerical simulations than the linear model.

Keywords: fracture, quasi-brittle material, elemental enrichment finite element method (E-FEM).

Neste artigo, um modelo numérico com descontinuidades fortes é apresentado para abordar problemas de fratura em materiais quase frágeis. 
É implementada uma formulação não simétrica estaticamente e cinemáticamente consistente. A descontinuidade forte no campo de desloca-
mentos é representada usando o método do elemento finito com enriquecimento elementar (E-FEM). Em outras palavras, a descontinuidade 
forte é introduzida no elemento finito e os graus de liberdade adicionais são condensados em nível de elemento, permitindo a implementação 
em códigos computacionais existentes. Dois modelos constitutivos são utilizados para analisar o comportamento da região fissurada, um linear 
e outro exponencial. Os resultados do modelo exponencial estão mais próximos dos obtidos em dados experimentais e simulações numéricas 
representativas do que o modelo linear.

Palavras-chave: fratura, material quase-frágil, método de elementos finitos com enriquecimento elementar (E-FEM).
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1. Introduction

The formation and propagation of cracks is a phenomenon observed 
in many materials used in engineering, such as concrete, metals, 
ceramics and rocks. This process happens due to the formation of 
zones with strain localization where the concentration of damage and 
other inelastic effects occurs. Crack propagation occurs in arbitrary 
directions that can be influenced by the geometry of the structure, 
boundary conditions, heterogeneity or local defects of the material [1].
Therefore, one of the major challenges in discretization of crack prop-
agation problems is the fact that the discontinuities propagate through 
the structure in arbitrary directions as loading evolves. Several mod-
els to represent the crack propagation can be found in the literature, 
as discrete cracks (see [2], [3], [4], and [5]) and smeared cracks (see 
[6], [7], [8] and [9]). However, due to the complexity and limitations 
of those models, methods that are mesh independent and allow the 
propagation of cracks without remeshing are also being considered.
In the context of finite elements, two new approaches have been 
proposed. The extended finite elements (X-FEM), based on nodal 
enrichment or interpolation functions enrichment associated with 
existing nodes ([10], [11]) and the elemental enrichment (E-FEM), 
involving finite elements with internal degrees of freedom to repre-
sent strong or weak discontinuities  ([12], [8], [13], [14]). 
One of the major advantages of considering elemental enrichment 
(E-FEM) is the local enrichment feature, i.e., additional degrees of 
freedom are eliminated from the global solution by static conden-
sation. The technique allows the implementation in existing finite 
element codes making few modifications, besides presenting ad-
vantages in terms of computational cost and convergence when 
compared to extended models (X-FEM), as observed by [15].
This paper presents a strong discontinuity model proposed by [12]. 
The model is nonsymmetrical (SKON) according to the nomenclature 
of [15] and belongs to the elemental enrichment elements (E-FEM). 
The model was implemented in the code METAFOR (METAFOR is 
a commercial FE code developed in the Liège University, see [16]).

The outline of the rest of this paper is as follows. Section 2 presents 
the Variational Principle governing the problem. Section 3 describes 
the approximation of the model by the finite element method. Section 
4 presents the asymmetric model implemented. Section 5 provides 
the crack propagation criterion and constitutive relation. Section 6 
shows the results and the conclusions are discussed in chapter 7.
ows the results and the conclusions are discussed in chapter 7.

2. Variational principle

Strong discontinuity models simulate the relation between forces 
through the crack and the opening of the crack (discontinuity of the 
internal displacement field of the element). For these models, the 
variational principle that represents the problem should include the 
relation between the transmitted stresses versus crack opening [8].
In the implemented model [12], the Hu-Washizu variational principle 
for incorporation of discontinuities in the displacement field is used. In 
this principle the displacement u, strain ε, and stress σ fields are inde-
pendent of each other. These fields are defined in a V domain, where 
volume forces  are applied. The surface is divided into two parts: Su, 
where the essential boundary conditions, , are applied; and St, 
in which the natural boundary conditions are applied (Figure 1a) [15].
The principle can be extended to a body with an internal interface 
S, Figure 1b), which divides the domain and the boundary condi-
tions into two parts. A field of surface forces, tj, appears on the in-
ner surface. This field is a function of the discontinuity of displace-
ments through the internal interface [8].
The field equations that govern the problem can be coupled on a 
variational principle according to equation (1):

(1)

in which δ represents variation, σ(ε) the stress obtained from the 
constitutive relations, ∇u the displacement gradient.

Figure 1
Boundary condition in the domain. a) continuous, b) with inner interface

Continuous domain Domain with inner interfaceB BA B
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The stationary condition of this principle provides the relations of 
strain-displacement, the constitutive relation, the differential equation 
of equilibrium and the static boundary condition, according to equa-
tions  to , respectively. In addition, it provides geometric and mechani-
cal boundary conditions as natural boundary conditions  [17].

(2)

(3)

(4)
 

(5)
where n is the outward normal vector to the boundary.

3. Finite element method approximation

The numerical modeling of strong discontinuities on solids requires 
the use of a formulation that correctly represents the discontinuity 
in the displacement field, considering the independence between 
the fields of stress, strain and displacement. In this item, a general 
formulation will be presented within the context of finite elements, 
based on the works of [8], [15] and [18].
In order to represent the discontinuity of displacements in the internal 
interface, the displacement field is represented by the sum of the con-
tinuous and discontinuous portions representing the relative motion 
between the two parts of the domain separated by the discontinuity 
[19]. Therefore, the field of displacements with discontinuities is:

(6)
where N are the standard shape functions, which assume the uni-
tary value on its respective node and zero elsewhere, dN are the 
nodal displacements, NC are the shape functions of the additional 
displacement terms and dC are the additional displacement modes.
The strain field can be determinate as:

(7)
where B are the derivatives of the standard shape functions (N), G 
is the matrix that contains the additional shape functions for strain, 
e is the vector that contains the additional strain modes [8].
Based on the variational principle defined in , the stress field, strain 
field and displacement field can be defined independently. There-
fore, the stresses are calculated as:

(8)
in which S is the matrix that contains the stress interpolation func-
tion and s is the vector that contains the stress parameters. 
Replacing the equations (6) to (8) in (1) and considering  
∇(NdN) = BdN and ∇(NCdC ) = BCdC, we have:

(9)

In that, fEXT are the usual external forces and fc are the additional 
external forcers defined by:

(10)
and

(11)
For loads applied outside the region with additional interpolation, 
fc = 0.
In the equation (9) BC are the additional displacement interpolation 
functions, G are the additional strain term shape functions, which 
can be defined independently, in the case where additional displace-
ments and strains are defined independently. Due to the indepen-
dence of the variables, we can obtain the discretized equations:

(12)

(13)

(14)

(15)
In order to linearize the dependence of σ in relation to dN and e, 
the formulation is changed to incremental form (rates). For a given 
state, the linearized stress-strain relation is: 

(16)
where D ≡ δσ / δε (constitutive matrix of the material). 
Changing the equations (12) to (15) for the rate form and replacing 
(16) in these equations we obtain the following set of equations:

(17)

The interpolation of stresses and strains can be discontinuous. 
Therefore, the stress and strain parameter can be associated with 
only one finite element. The same happens for the additional dis-
placement parameters (e, s, dC). They can be condensed at the 
element level and global equations contain then only the degrees 
of freedom relative to the standard displacement, dN [8]. 
Therefore, the equations (12) to (15) and (17) can be rewritten to a 
finite element that occupies a volume Ve and the external forces fEXT 
are replaced by the elemental contribution of internal forces fi

EXT .
According to [15], the formulation presented can be particularized 
in three cases: Kinematically optimal symmetric elements (KOS), 
Statically optimal symmetric elements (SOS), and Kinematically 
and statically optimal non-symmetric elements (SKON). The first 
describes the kinematic aspects satisfactorily, but leads to an in-
appropriate relation of stresses in the crack, the second consid-
ers the continuity of stresses through the internal interface, but 
does not guarantee kinematic continuity and the latter presents 
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a better performance by using a continuity condition of natural 
stresses and fairly well represent kinematic continuity.
A kinematically and statically optimal non-symmetric elements (SKON) 
model is implemented because this formulation presents more robust 
and reliable results than the others [19], for more information see [16].

4. Asymmetric model implemented

In this paper the asymmetric model proposed by [12] is im-
plemented to represent the strong discontinuities, with the  
following characteristics: 
n Consider the entire element as a minimum domain in the local-

ization of strains, instead of working at the integration point level.
n The strain localization within the finite element is considered 

as a displacement discontinuity line incorporated in the ele-
ment domain.

n Two constitutive relations are defined to represent the material 
behavior when the localization is started at the element. A stress-
displacement relation for the discontinuity line, related to fracture 
energy, and a stress-strain relation for the element domain.

n The elements resulting from this formulation are non-conforming.
n This formulation represents the global effects of locating strains 

on a structure. Hence, it is not possible to obtain a detailed de-
scription of the stress field near the localization zone.

In order to better understand the implemented asymmetric formu-
lation, initially a simple case of a bar finite element with two nodes 
is analyzed, Figure 2a). 
Before the opening of cracks, displacements are obtained accord-
ing to equation (18). 

(18)
where U is the vector that contains the increments of nodal dis-
placement and N contains the interpolation functions. 
The dashed line 3 in the Figure 2a) represents this interpolation. 
When the crack opens, a discontinuity of displacements is consid-
ered in center A, which divides the element into two subdomains 

V1 and V2. It is assumed that V2 suffers an increment of rigid body 
displacement (e) regarding V1. 
In order to obtain the same strain for both subdomains, the interpo-
lations of lines 1 and 2 shown in Figure 2a) are adopted for V1 and 
V2. Therefore, the displacements for each subdomain considering 
the line of discontinuity becomes:

(19)
and

(20) 
                       

where ϕ =(0  1)T. Deriving the equations (19) and (20), the same 
incremental strain is obtained. Therefore, for any point into subdo-
mains V1 and V2. 

(21)
For the two-dimensional case (Figure 2b)) the concepts presented 
above can be generalized considering:

(22)
where e’ contains the rigid body motion components associated with 
the localization line, evaluated at the center of the element, in the 
local system (x’, y’):

(23)
and R is the rotation matrix of the local Cartesian system of discon-
tinuity (x’, y’) to the coordinate system of the element. Moreover, ϕ  
becomes a matrix defined by:

(24)
where each submatrix ϕn is a matrix of  2x2 dimension, defined 
according to:
 

  

where I represents the identity matrix.

Figure 2
Finite element with localization line a) one-dimensional, b) two-dimensional
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Therefore, the displacements u1 and u2 takes the form.

(25)
and

(26)
where

(27)
which is the displacement that causes strains.
For two points near the line of discontinuity, one on V1 and another 
on V2, the displacement is given by:

(28)
The strain for the two-dimensional case is:

(29)
After the crack is open, it is necessary to consider an internal equi-
librium condition for the discontinuity line. Starting from equation  
(1), see more details in  [16], we have:

(30)
The matrix P selects the stress components that will be transmitted 
through the crack.
The constitutive relation for the localization line is defined as:

(31)

where Et (uc) is adjusted according to the fracture energy, Gf , and 
Gt is related to the shear modulus.
For the element domain:

(32)
In that t and t+Δt  represents pseudo-times relatives to the load 
increments, where t is the previous increment and  t+Δt  is the 
current load increment (total). De is the elastic constitutive matrix 
of the material.
For the elements in the region where the localization does not oc-
cur, the same relation presented in (32) is used.
Considering the strain in (29), replacing (32) in (12):

(33)
where

(34)
and 

(35)

Replacing (32) and (31) in the additional equilibrium condition (30), 
we have:

(36)

where

(37)
and

(38)
Therefore, replacing (37) and (38) in (36) and isolating the addi-
tional displacement, we obtain:

(39)
From (39) we have the condensation of the internal degrees of 
freedom of equation (33) resulting in:

(40)
where

(41)
          

is the consistent tangent stiffness matrix. It is observed that the 
terms in parentheses make the matrix asymmetric, which can be a 
problem for implementation in pre-existing codes that use only 
symmetric solvers.
In the implemented model, only the symmetric part of the stiff-
ness matrix of equation (41) was used because, for the ana-
lyzed problems, the difference in disregarding the asymmetric 
part is irrelevant. This is supported by [12], that observed that 
the symmetric matrix presented satisfactory results, although it 
required more iterations to achieve convergence.  Even using 
only the symmetrical part of the stiffness matrix in equation (41), 
the presented method produces results more consistent and ro-
bust than methods based on the symmetrical formulations – in 
crack propagation, the conditions of continuity of stresses at the 
internal interface and rigid body motion between the sides of the 
element separated by the crack are still guaranteed.
Therefore, at the global level the system of equations to be solved 
is given by:

(42)
To obtain the equilibrium at time  t t+ ∆  it is necessary to iterate 
at the element level the equation  and, at the global level (struc-
ture), using load control for the ith iteration:

(43)

The final equilibrium of the equations given in (43) is obtained 
using some iterative method. In this work we used the Newton-
Rhapson method.
The stiffness matrix is obtained by integration with 2x2 Gauss 
points. After the crack opens on an element, the element is con-
sidered as the minimum domain, i.e., all properties are calculated 
in the center of the element, using integration with 1 Gauss point. 
This may lead to null strains modes (spurious modes) in the use of 
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distorted finite elements in the cracked region. In order to avoid this 
problem, it is interesting to use finite elements able to overcome 
this problem, such as the QMITC element [8].
To obtain the equilibrium within the element, equation (30),  
presents some particularities. Reference [20] shows an algorithm 
to obtain this equilibrium when a localization line is opened inside 
an element:
a) Consider the crack opening equal to the opening of the previ-

ous global iteration k=0 local iteration counter

(44)
b) From the displacement obtained by the global equation system, 

determine the displacement that causes strain in the element

(45)
c) Calculate the incremental stress in the element domain, using (32) 
d) Calculate the incremental stress in the discontinuity line using (31)  
e) Obtain the increment of crack opening

(46)
f) Update the crack opening value

(47)
g) Verify convergence

(48)

(49)
h) Return to item b)

5. Constitutive relations and crack 
 propagation criterion

The constitutive relations used in this work are presented in Figure 3.

The linear elastic constitutive relation (Figure 3a)) is used to 
represent the behavior of the intact material (without cracking) 
and to represent the discharge behavior of the material in the  
non-cracked region after the cracking process has begun. This re-
lation is presented in equation (50).

(50)
where σ represents the stress in the domain, De the elastic consti-
tutive matrix and ε the strain.
The linear softening constitutive relation used for the cracked line, 
Figure 3b), is the Hillerborg model [21]. The area under the graphic 
in the Figure 3b) represents the fracture energy. 
The fracture energy (Gf) and tensile strength (ft) are characteristic 
of the material, then the maximum crack opening can be obtained 
through equation (51),

(51)
The equation that represents this constitutive relation is given by:

(52)
The exponential constitutive relation, schematized in Figure 3c), is 
based on the model presented by [12]. The equations that repre-
sent the exponential softening curve is:

(53)

(54)
A limit is imposed for the factor exp(-aw) = 0.05 in order to obtain 
a maximum crack opening value (wmáx). α is taken equal to 1.05.
In the implemented model, the failure criterion proposed by Ran-
kine was used, then failure occurs by fracture in planes of maxi-
mum tensile stress. Therefore, according to this criterion, when 

Figure 3
Constitutive relations: a) linear elastic; b) linear softening; c) exponential softening

B B BA B C
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one of the principal stresses (in modulus), |σ1| or |σ2|, reaches the 
tensile strength (ft), the crack opens [22].

6. Numerical examples

In this section, we present the numerical experiments to illustrate 
the application of the presented methodology.

6.1 Four-point bending test

In this first example, a simply supported beam loaded by two sym-
metric disposed forces, tested experimentally by [23], is analyzed, 
as seen in Figure 4. In this case, shear effects are eliminated be-
tween the points of loading application and beam is under pure 
bending in the region. 
The beam was discretized by four different finite element mesh-
es, according to Table 1 (elements at the crack line include en-
riched interpolation functions described above). In Figure 5, M1 e 
M4 meshes are shown. In Table 2 material and geometrical data 
are given. 
Initially, the influence of the softening law on global behavior is 
analyzed. In Figure 6, the softening functions used are presented. 
In the linear model the maximal opening is smaller than in the ex-
ponential model. As it will be seen later, this difference changes 
global behavior. 
In Figure 7, load versus displacement results for the two soft-
ening functions are shown for mesh M4. Displacement is mea-
sured at loading point. Lotfi and Shing [23] analyzed the same 
example using two types of fracture models: one incorporated 
(R1) and another distributed (R2). In Figure 7, R1 case is also 
shown. As seen, linear softening leads to larger peak load-
ing. Post-peak behavior is also brittler because less energy is 

available in the material for larger openings. In the exponential 
case, post-peak descent is not so steep and closer to values 
obtained by [23]. 
In Figure 8, a study of the mesh influence is shown. Meshes M1, 
M2, M3 and M4 (see Table 1) are considered. It can be concluded 
that results tend to converge to one result with mesh refinement, 
showing the objectivity of the formulation is fulfilled. Results R1 
and R2 of the reference are also shown.

6.2 Three-point bending test

A classic test to analyze the crack propagation in mode I is the 
notched beam tested under three-point bending. To validate the 
methodology implemented in this paper, the beam tested experi-
mentally by [24] was used as reference.
Figure 9 shows the beam geometry and the boundary conditions. 
The beam was discretized with three different finite element mesh-
es, according to Table 3. 
Figure 10 shows the meshes used with discretization detail at the 
notched region.

Figure 4
Beam geometry and boundary conditions – four-point bending test

Table 1
Meshes for the four-point bending test 

Name Total of 
elements

Elements  at 
crack line

M1 423 15

M2 548 20

M3 690 30

M4 822 30

Table 2
Input parameters for the four-point bending test 

Geometric properties

Beam

Length 450 mm

Height 100 mm

Thickness 50 mm

Notch

Length 2,5 mm

Height 10 mm

Thickness 50 mm

Material properties

Tensile strength (ft) 3,0 MPa

Young modulus (E) 38000 MPa

Poisson coefficient (ν) 0,2

Fracture energy (Gf) 0,06 N/mm
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Table 4 shows the input data used for this example and correspond 
to experiments done by [24].
For the non-cracked zone a linear elastic constitutive relation 
was used. In the cracked zone, the influence of the two different  
softening laws, linear and exponential, are again investigated.
Figure 11 presents a comparison of the results obtained for the two 
softening laws used, for the most refined mesh (M3), and also the 
experimental results. As can be observed the exponential soften-

ing presents results very similar to the real behavior of the tested 
beam. In the linear model, the maximum stresses are overestimat-
ed and the post-peak curve is steeper than the exponential model. 
This behavior is similar to the previous case analyzed.
A comparison among different finite element meshes is presented 
in Figure 12. A finer refinement of the mesh was done in the zone 
near the crack. It is noted that even for a coarse mesh (M1) the 

Figure 5
Discretization of the meshes M1 and M4 with detail in the region of the notch - four-point bending test

Figure 6
Constitutive models to the crack line

Figure 7
Load x Deflection of the beam with linear 
and exponential softening
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present results are satisfactory. Numerical results tend to converge 
to a smoother response with the increase of refinement. 

7. Conclusion 

The aim of this work was to implement a crack model with strong 
discontinuities in code METAFOR, in order to analyze the behavior 
of structural elements in the post-peak stage. The implemented 
model was based on the study proposed by [12]. Kinematically 
and statically optimal non-symmetric elements (SKON) formulation 
was implemented and the QMIT finite element (Quadrilateral with 
Mixed Interpolation of Tensorial Components) was used. In this 
work a quadrilateral bilinear element in addition to the symmetrical 
part of the stiffness matrix is used.
Analyzing the results presented in section 6 we could verify the 

ability of the model to correctly capture the behavior of the material 
in the regions with and without cracking.
It was possible to verify that the softening laws have big influence 
on the behavior of the structure. The exponential softening mod-
el [12] appeared to be the best solution because the peak stress 
was correctly estimated and the softening curve presented a more  

Figure 8
Load x Deflection of the beam in the load points 
for the 4 meshes. (R1 and R2 results are from 
reference [23])

Figure 9
Beam geometry and boundary conditions – three-point bending test

Table 3
Meshes for the three-point bending test

Name Total of 
elements

Elements  at 
crack line

M1 381 15

M2 721 25

M3 811 25

Table 4
Input parameters for the three-point bending test 

Geometric properties

Beam

Length 2000 mm

Height 200 mm

Thickness 50 mm

Notch

Length 20 mm

Height 100 mm

Thickness 50 mm

Material properties

Tensile strength (ft) 3,33 MPa

Young modulus (E) 30000 MPa

Poisson coefficient (ν) 0,2

Fracture energy (Gf) 0,124 N/mm
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realistic behavior, when compared with experimental data. In the linear 
model [21], the peak loads were overestimated when compared to ex-
perimental data. In addition, the linear model presented a more brittle 
softening branch than is actually observed for quasi-brittle materials.

In general, the results obtained presented a good agreement to the 
experimental results as well as numerical results obtained by crack 
models presented in the literature. Therefore, it can be stated that 
the implemented model is suitable for the simulation of quasi-brittle 

Figure 11
Load x Deflection of the beam with linear and 
exponential softening

Figure 12
Load x Deflection of the beam with different 
mesh sizes

Figure 10
Discretization of the meshes with detail in the region of the notch - three-point bending test
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materials. It is worth mentioning that this model has as advantage 
the use of relatively coarse meshes, besides the possibility of im-
plementation in existing finite element codes.
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