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Abstract 

Resumo

The steel-concrete composite sections are often used in civil building in Brazil and around the world. The connection of the steel profile and the 
concrete slab increases the performance of the composite structural element due to the use of the advantages of each material. In this article, a 
bar element is used with an interface element for nonlinear analysis of steel-concrete composite beams with partial interaction. The objective is to 
develop an algorithm that uses this analysis tool to design steel-concrete composite beams looking for project optimized in terms of material costs. 
Defined spans, supports, ultimate and service load, an optimization algorithm is used to define the dimensions of the rectangular cross section of 
the concrete slab, I-shaped steel profile, and the reinforcement bars of the concrete slab, so that the quantity of these materials are the minimum 
to ensure structural safety, considering the ultimate and service limit states. The design constraints are obtained from building code requirements 
for concrete, steel and composite structures. The objective function is defined as the cost per unit length of the composite beam, obtained from 
the unit cost of each material, steel, concrete and reinforcement. In the optimization process, the iterative method sequential linear programming 
is used, in which the nonlinear problem is approximated by a sequence of linear problems, which has its optimum point defined step by step by 
the Simplex method. Examples of composite beams with ultimate loads defined in the literature were used to validate the implementations. Other 
examples were analyzed, being evaluated at each iteration the restrictions and objective function to verify the efficiency of the algorithm.

Keywords: piles, PIT, reinforcement effects.

As seções mistas de aço e concreto estão cada vez mais sendo utilizadas na construção civil, tanto no cenário mundial quanto no Brasil. O trabal-
ho conjunto do perfil de aço e da laje de concreto aumenta consideravelmente o desempenho do elemento estrutural misto devido ao aproveita-
mento das vantagens de cada material. Neste trabalho, é utilizado um elemento de barra em conjunto com um elemento de interface para análise 
não linear de vigas mistas de aço e concreto com interação parcial. O objetivo é montar um algoritmo que utilize essa ferramenta de análise para 
dimensionar vigas mistas de aço e concreto buscando um projeto otimizado em termos de gastos dos materiais. Definidos os vãos, os apoios, 
os carregamentos para verificação última e de serviço, um algoritmo de otimização é utilizado para definir as dimensões da seção transversal 
retangular da laje de concreto, do perfil I de aço e das barras de reforço da laje de concreto, de forma que a quantidade desses materiais seja 
mínima, garantindo a segurança estrutural, considerando os estados limites último e de serviço. As restrições de projeto são aquelas definidas 
em normas referentes ao dimensionamento de elementos lineares de concreto, aço ou misto. A função objetivo é definida como sendo o custo por 
metro linear da viga mista, obtida a partir do custo de cada material, aço, concreto e armadura. No processo de otimização é utilizado o método 
iterativo de programação linear sequencial, no qual o problema não linear é aproximado por uma sequência de problemas lineares, que tem seu 
ponto ótimo definido a cada passo usando o método Simplex. Exemplos de vigas mistas para as quais foram definidas suas cargas últimas foram 
utilizados para validação das implementações. Outros exemplos foram analisados para os quais foram controlados a cada iteração as restrições 
e função objetivo verificando a funcionalidade do algoritmo.

Palavras-chave: otimização, vigas mistas, método simplex, programação linear sequencial.



1. Introdution

With the increasing use of computers together with computational me-
chanics to solve structural analysis problems, optimization processes 
have become an important tool for engineering. The optimization tech-
niques aim to extract the maximum performance from the product or 
service. In structural engineering they can be applied in order to find, 
among the many possible solutions, the one that is more economical 
and meets the architectural, safety and constructive conditions.
Steel-concrete composite beams are structural elements com-
posed of a rolled, cold-formed or built-up steel member attached to 
a conventional or steel-deck concrete slab by means of shear con-
nectors. In most of the composite beam designs there are a greater 
number of variables than the number of equations related to these 
variables. Thus, it is necessary to assign values to some variables 
in order to calculate the others. That is, there exists an unlimited 
number (continuous variables) or large (discrete variables) of solu-
tions to the problem. In view of this context, the objective of this 
work is to create an algorithm that uses tools for composite beam 
structural analysis searching for an optimized design in terms of 
quantity and cost of materials. In other words, defined spans, sup-
ports and loads for service and ultimate analyis of a composite 
beam, an optimization algorithm is used to define I-shaped steel 
section dimensions, rectangular concrete slab section dimensions, 
and the quantity and diameter of the reinforcement bars so that 
the amount of these materials is the minimum required to meet 
the safety criterion considering the ultimate and service limit state.
In the verification of the ultimate and service limit state a structural 
analysis of the composite beam with partial interaction is required. 
For this, the finite element method is used simulating the compos-
ite beam by means of bar and interface elements developed by 
Silva and Sousa [1]. In this numerical simulation the bar elements 
simulate the concrete slab and the steel beam, while the interface 
element connects the bar elements and simulates the deformable 
connection at the interface between the concrete slab and the steel 
beam. Several works can be found in the literature for nonlinear 
numerical analysis of steel-concrete composite beams with partial 
interaction using bar finite elements [2-11].
Several works on optimization can be found in the literature in the 
most diverse areas of knowledge. Kravanja et al. [12] optimized 
composite beams in which the reinforced concrete slab is connected 
to a built-up steel section of type I. The technique used was MINLP 
(Mixed Integer Nonlinear Programming) that solves problems of 
nonlinear optimization with discrete and continuous variables. For 
this analysis, the authors verified the ultimate and service limit state 
and the objective function considers execution and material cost.
Kravanja et al. [13] investigated composite beams formed by a 
concrete slab connected to a doubly symmetrical built-up steel 
section of type I and composite beams formed by the associa-
tion of a concrete slab with a steel truss beam. The study was 
performed applying structural optimization through nonlinear pro-
gramming. Also using nonlinear programming using the reduced 
gradient technique, Klanšek and Kravanja developed some works 
in the area of composite floor optimization [14-17].
Senouci and Al-Ansari [18] developed a genetic algorithm model to 
optimize the cost of composite beams, including the cost of con-
crete, steel profile and shear connectors. For this, the model was 

formulated in two main stages: the first one is to determine most im-
portant variables in the composite beam design, and the second is 
to formulate the optimization of the total cost of the comosite beams.
Abadi and Kaveh [19] studied the cost optimization of a composite 
floor system using a harmonic search algorithm. In the objective 
function, the authors considered only the costs of the materials 
(concrete, steel and connectors) and the project constraints are 
defined according to design code. Two examples of composite 
floors were evaluated to study the model developed and the au-
thors concluded that the method was efficient in the search for the 
best solution of the structural optimization problem.
Silva et al. [20] presented the optimization of steel-concrete com-
posite beams modeled and discretized in bar finite elements using 
the linear programming method associated with the Simplex meth-
od. The authors considered as design variables the cross-section-
al dimensions and the stiffness of the deformable connection. The 
design constraints were defined from the maximum stresses in the 
materials obtained considering physical linear analysis.

2. Finite Elements for composite  
 beam nonlinear analysis

In order to verify the design constraints related to the optimized 
design of steel-concrete composite beams, a composite beam 
structural analysis is required. For this, two finite elements, a bar 
element and an interface element [1], are used in this work.

2.1 Bar Element

Equations 1 and 2 define the axial and transverse displacements 
of any point in the bar element with reference axis coincident with 
the axis of the bar. These equations were defined considering the 
basic hypotheses of the Bernoulli-Euler beam theory.

(1)

(2)

In Equations 1 and 2 the superscript 0 indicates a reference axis ad-
opted to represent the three-dimensional beam by a bar element. Ap-
plying the Green-Lagrange strain tensor to the displacement equations 
the equation for axial deformation in the bar element is obtained. Apply-
ing the virtual works principle we arrive at the internal force vector and 
tangent stiffness matrix given by Equations 3 and 4 for a bar element.

(3)

(4)

In Equations 3 and 4, N = ∫A σxdA  and  M = ∫Aσx ydA  are nor-
mal force and bending moment in the cross section of beam. The 
terms of the vectors Φu and Φv are given by shape functions that  
approximate the axial and transverse displacements equations 
from the values of these displacements given at specific points of 
the bar element. In this paper the two-node bar element with three 
degrees of freedom per node is used; so vector Φu has two terms 
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(linear interpolation of axial displacements) and vector Φv has  
4 terms (cubic interpolation of transverse displacements). For the two-
node bar element, q = [u1 u2 v1 v'1 v2 v'2]T  is the nodal displacement vector.

2.2 Interface element

Considering composite beam simulated by a bar element for the 
section above of the slip interface and another bar element for the 
section below that interface, the interface element has the function 
of connecting these bar elements and simulating the deformable 
connection at the slip interface.
Figure 1 shows the deformation of a composite beam segment con-
sidering Bernoulli-Euler beam theory. In a rectangular interface ele-
ment of zero thickness, the displacements considered are the relative 
movements between the upper and lower faces in the horizontal and 
vertical direction relative to the axis of the element. These displace-
ments are presented in Equations 5 and 6, where wh is the relative 
horizontal displacement and wv the relative vertical displacement.

(5)

(6)

Similar to the bar element is used the of virtual works principle for 
the development of the formulation of the zero thickness rectan-
gular interface element. Since Sb is the shear force per unit length 
related to the horizontal relative displacement and Nb the normal 
force per unit length related to the vertical relative displacement, 
we arrive at the Equations 7 and 8 for internal force vector and the 
tangent stiffness matrix to the interface element.

(7)

(8)

The interface element is a rectangular element of 4 nodes and The 
interface element is a rectangular element of 4 nodes and three 
degrees of freedom per node; thus qT = [ qT

1 qT
2 ], with qα (α = 1,2) 

being the nodal displacement vector of the bar element above and 
below of the interface. Φu  and Φv  are column vectors as presented 
in the previous item.

3. Optimization

This topic presents the considerations related to the studied prob-
lem, such as objective function, constraints and design variables. 
Also presented is the optimization method used in the analysis of 
nonlinear constrained optimization problem.

3.1 Objective function

For a same structural problem there are several feasible projects, 
some better than others in terms of some parameter of compari-
son, such as the amount of material used. Thus, an objective func-
tion is established to define a numerical criterion relating a given 
set of variables with the objective to obtain an optimized project.
In this article the objective is to determine the minimum cost of 
steel-concrete composite beams subjected to simple bending. 
Therefore, it is necessary to determine the minimum of the objec-
tive function given by Equation 9, where: b is the concrete slab 
width, h is the concrete slab height, bfi, bfs, and bw are lower and 
upper flanges width and web width, tfi, tfs and tw, lower and upper 
flange thickness and web thickness, As1 and As2 are lower and up-
per reinforcement areas of the concrete slabs, Ca, Cc and Cb are 
costs of profile steel, reinforcement bar steel, and concrete slab.

(9)

This function was defined for non-symmetric I-shaped in the case 
of the symmetrical I-shaped has: bf = bfi = bfs and tf = tfi = tfs.

3.2 Design variables

Design variables are parameters that describe the project and change 
their values throughout the optimization process. They can be of two 
distinct types: discrete (or integer, values within a certain fixed set) 
and continuous (real) variables. In this work, in the optimization pro-
cess, the design variables are continuous being the parameters that 

Figure 1
Deformation of a composite beam segment [1]
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define the steel beam I-shaped cross-section, the concrete slab rect-
angular cross-section and the area of the reinforcement bars of the 
concrete slab, as shown in Figure 2 and Eq. 10.

(10)

As presented in section 3.6, the implemented algorithm initially de-
fines values for the design variables considering them as continu-
ous variables, thus defining dimensions for the steel profile, for the 
concrete slab and reinforcement not usual. To avoid this, a few 
steps after the definition of the optimized section were included 
in the algorithm considering the design variables as discrete, thus 
obtaining a section with usual dimensions.

3.3 Design constraints

Constraints are a set of requirements and conditions that must be 
satisfied in order for the project to be acceptable. It can also be 
said that they are equations or inequalities of the design variables 
that describe project situations that must be met.
Defining the materials properties according to technical specifica-
tions [21, 22], the ultimate and service limit load that the compos-
ite beam resists is obtained. These values are compared to the 
input data and define two constraints. In this work only compact 
section will be used; thus, the flange and web slenderness of the 
profile I will be limited so that flange and web local buckling does 
not occurs. Other restrictions that must be considered are lateral 
constraints, which are the lower and upper limits of concrete slab 
dimensions, steel profile I, reinforcement areas and step size. This 
last lateral constraint is defined so that the objective functions and 
constraints linear approximations used in the sequential linear pro-
gramming method are valid.

3.3.1	 Ultimate	limit	state	verfication

The fu fator that multiplies the load (ultimate combination) supplied 
by the user to which the composite beam is imminent of ruin is 
determined. Eq. 11 provides the constraint related to the ultimate 
limit state of the composite beam.

(11)

The value of fu equal to 1 means that the analyzed section resist, at 
the limit, a load equal to the load defined by the user. If it is larger 
than 1, the section satisfies the ultimate limit state constraint.

3.3.2	 Service	limit	state	verification

The maximum vertical displacement is determined for each span 
of the beam considering in the analysis the load (service combina-
tion) provided by the user. For the different spans of the beam, the 
value of the maximum vertical displacement (δ) is determined for 
the span most susceptible to the verification of the service limit 
state. This value is compared with the limit vertical displacement 
(δlim) specified by the user, as shown in Eq. 12.

(12)

If δ = δlim implies that the analyzed section satisfies at the limit the 
maximum vertical displacement constraint. In case δ < δlim the ana-

lyzed section satisfies the maximum vertical displacement constraint.

3.3.3	 Flange	and	web	slenderness	verification

In this work, only a compact section is allowed, that is, according to 
NBR 8800 [22], the limit slenderness (0,5bf/tf) for AL type elements  
 
is of  and of  for AA type  
 
elements. Thus, we can define Eqs. 13 and 14 for the flange and 
web slenderness constraint, respectively.

(13)

(14)

3.3.4 Lateral constraint

The lateral constraints are lower and upper practical limits for the vari-
ables. For example, a variable referring to the diameter of the steel 
bars can not be less than the smaller commercial diameter of the bars 
and nor higher than the larger commercial diameter. This type of con-
straint is common to all constrained optimization problems.
The design variables vector x has already been defined. By 
defining the vectors  and  as the lower and upper limits of 
these variables, the set of constraints given by Eqs. 15 and 16 for 
the lateral constraints of the design variables are defined. In these 
equations, i = 1,2, ...,n with n being the number of variables, that is,  
n = 8 for the symmetric case and n = 10 for the non-symmetric case.

(15)

(16)

In the search method of the optimum point presented in the item 
3.4, a starting point x0 is defined and the next point that meets 
the design constraints and generates a reduction in the objective 
function is obtained from the iterative equation xk+1 = xk+d, where d 
is the step size. Thus, the non-linear problem analyzed becomes 
a sequence of linear problems with the variables given by vector 
d. In order to be valid the linear approximation used in the method 

Figure 2
Design variables of the problem
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implemented in this work, lateral constraints must be imposed for 
the step size, that is, |d| ≤ Δ. Therefore, we arrive at the set of con-
straints given by Eqs. 17 and 18, where i varies from 1 to n, with n 
defined in the previous paragraph.

(17)

(18)

3.4 Sequential linear programming

The linear programming method is a mathematical solution ap-
plied to optimization problems where the objective function and all 
constraints represented by equations or inequalities of the design 
variables are linear with respect to these variables.
Eq. 19 is the mathematical form of presentation of the general op-
timization problem with equality and inequality constraints. In this 
equation, f is the objective function to be minimized, x is the design 
variables vector, and C and D are functions of the design variables 
that define, in this order, the inequality and equality constraints of 
the analyzed problem.

(19)

Eqs. 20 and 21 present the objective functions and constraints lin-
earization using the Taylor series expansion truncated in the first 
order term, where ∇T fk is a line vector with n terms given by the 
first order partial derivatives of the objective function in relation 
to the design variables evaluated at point xk. The term ∇T Cik is 
defined in an analogous way, considering the functions that define 
the constraints.

(20)

(21)

Given a feasible starting point x0, the problem presented in  
Eq. 19 can be analyzed iteratively using linear approximations of 
the objective functions and constraints and the iterative equation 
xk+1 = xk+d. The step d is found by solving the linear optimization 
problem given in Eq. 22. In this work the Simplex method is applied 
to solve this linear optimization problem.

(22)

3.5 Standard form for the analyzed problem

To define the next step of the sequential linear programming meth-
od by means of the Simplex method, it is necessary to place the lin-
ear problem of Eq. 22 in the standard form of linear programming. 
By doing this, Eq. 23 for the linear optimization problem, which 
will define the step to be given in each iteration, is obtained. The 
formulation in this item is presented for non-symmetric I-shaped 
section (n = 10 and m = 44); in the case of symmetrical I-shaped 
section (n = 8 and m = 36), the formulation is analogous.

(23)

In Eq. 23, ∇fk  is as defined above, d* = [d +T d -T uT]T, where d+ and 
d-  are two vectors with n terms (number of design variables), u is a 
vector with m terms (number of constraints), Imxm  is an identity ma-
trix of order m, and 01xm is a null line vector with m terms. For more 
information on how to arrive at this standard form, see [23, 24].
Derivatives in relation to the ultimate and service loads are ob-

tained using the finite difference method. Derivatives in relation to 
the objective function, the flange and web slenderness constraint, 
lateral constraint and step size control are obtained analytically by 
deriving their equations in relation to the n design variables. Eq. 24 
shows the derivatives of the objective function in relation to the n 
design variables, whereas Eqs. 25 to 32 present the derivatives of 
the inequality constraints in relation to the n design variables.

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

3.6 Algorithm

The following algorithm describes the iterative method to obtain an 
x vector that minimizes the objective function f (x) and satisfies all 
design constraints discussed above.
Step 1 Reading of input data provided by the user: materials 

stress-strain curve of the composite beam, loading con-
sidering ultimate and service combination, support condi-
tions, materials unit cost, limit parameters, beam discreti-
zation in bar and interfade finite element, analysis type 
(symmetrical or non-symmetrical I-shaped steel section), 
as well as the concrete slab, I-shaped steel section and 
reinforcement dimensions. These dimensions must be 
provided respecting the limit parameters. Other input data 
are the possible variations within the limit parameters for 
each design variable. This data is used by the program to 
define a discrete section from the optimized section ob-
tained considering the design variables as continuous.

Step 2 Determine the starting point that meets all design constraints. 
This point is needed to start the iterative process of finding the 
optimal point using linear approximations to the constraints 
and objective function at each step. Through the structural 
analysis the algorithm verifies if the dimensions provided by 
the user meet the constraints. If not met, the algorithm in-
creases dimensions by 10% until all constraints are satisfied.

Step 3 Use of sequential linear programming and the Simplex 
method to define the optimized section. Using the starting 
point of the previous step and the Simplex method, a new 
point is obtained by solving a linear optimization problem.

Step 4 Transforming the optimized section from the previous step 
into a section with discrete variables. The algorithm set 
the value of a design variable according to an available list 
and closer to the value obtained by the Simplex method. 
From there, this variable is eliminated and the problem is 
reanalyzed by setting new values for the other variables, 
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and so on until all the design variables are defined accord-
ing to the variation defined by the user.

4. Applications

In all the examples analyzed to verify the method proposed in this 
article, the nonlinear analyzes of the composite beams were done 
using the finite elements presented in item 2. Two of these ex-
amples are presented below.

4.1 Example 1 

Salari and Spacone [25] analyzed the load capacity of a steel- 

concrete composite beam of two span with partial interaction, 
shown in Figure 3. In the numerical analysis, the authors used a 
bar finite element with ten degrees of freedom, capable of simu-
lating the materials non-linearity. The constitutive relations of the 
materials used by Salari and Spacone [25] are shown in Figure 4.
The example of Figure 3 was also analyzed by Silva and Sousa 
[1]. The numerical results obtained by Salari and Spacone [25] and 
Silva and Sousa [1] are shown in Figure 5, where the curves that 
relate the applied load P to the vertical displacement Δ of the beam 
analyzed in this example are shown.
It is observed in Figure 5 that the maximum concentrated load 
supported by the composite beam analyzed is 132.3kN, applied 
in the midspan. This value will be used as the solicitant load in a  

Figure 3
Composite beam with partial interation: continuous beam and cross-section [25]

Figure 4
Constitutive laws used by Salari and Spacone [25], respectively: concrete, steel (profile and reinforcement) 
and interface connection
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continuous composite beam with the same configurations of the 
beam shown in Figure 3, for which the user will define any initial 
section and the optimization algorithm will provide an optimized 
section, validating its application.
In the numerical simulation of this work, 8 bar elements were used to 
simulate the concrete beam, 8 bar elements to simulate the steel beam 
and 8 interface elements to simulate the deformable connection.

4.1.1 Optimizing I-shaped steel section 

It will be forced that the variables referring to the concrete slab 
section and reinforcement have final values equal to that of the 
section of Figure 3 (As1 = 445 mm2, As2 = 0, b = 610mm and  
h = 60mm). For this, a low cost for concrete and reinforcement and a 
high cost for steel will be defined in the input file, associated to upper 
limit values for the concrete section and the reinforcement dimensions 
equal to the values of the section dimension of Figure 3. Thus, in the 
search for the minimum cost, the algorithm will tend to reduce the I-
shaped steel section more significantly until it reaches a point where it 
will begin to increase the concrete section and reinforcement dimen-
sions to continue reducing the I-shaped steel section. The increase of 
the concrete section and reinforcement dimensions will end when the 
defined limits dimensions (lateral constraint) are reached; from there 
only the variables of the I-shaped steel section will be changed.
It is shown in Figure 6 the initial section provided by the user that 
must satisfy only the requirements of the limits dimensions also in-
serted in the input file. The section altered by the algorithm to meet 
load and slenderness requirements is also presented in Figure 6. 
This section is considered as the starting point of the optimization 
method in this example.
Table 1 shows the limits values defined for the design variables. As 
already mentioned, costs were provided by forcing concrete sec-
tion (b and h) and reinforcement (As1 and As2) variables to converge 
to their upper limit values.

In the assignment of the discrete values, the variation parameters 
provided by the user were 10 mm for the dimensions bf and bw bf 
and 1.0 mm for the dimensions tf  and tw. Thus, the widths will be 
discrete values with centimeter precision and the thicknesses will 
be discrete values with millimeter precision, between the lower and 
upper limits of each variable described in Table 1.
The implemented algorithm will provide a concrete section and 
reinforcements with dimensions equal to those of the Salari and 
Spacone section, and for the steel profile, the smallest I-shaped 
section that meets all design constraints will be provided. For the 
ultimate load constraint verification, a load of 132.3 kN was consid-
ered concentrated in the beam midspan, and for the service load 
constraint verification the value of 70 kN was considered for a load 
concentrated in the beam midspan, which is a load approximately 
equal to half the load obtained by a ultimate combination.
The response obtained in this example, considering symmetrical 
I-shaped section, is shown in Figure 7. As already expected, the 

Figure 5
Load-displacement curve for a point in 
the mipspan of the composite beam

Figure 6
Section defined by the user and initial section 
defined by the algorithm (dimensions in mm)

Table 1
Limit parameter for design variables (dimensions in mm and area in cm2)

Variables b h bf tf bw tw As1 As2

Lower limit 200 10 40 2 80 2 0 0
Upper limit 610 60 1000 100 2000 100 4.4 0

Figure 7
Optimized symmetric section obtained 
by the algorithm (dimensions in mm)
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reinforced concrete section is equal to the section of Salari and 
Spacone. The symmetrical I-shaped section presents a total area of 
1,140mm2, while the  Salari and Spacone section presents an area 
of 2,390mm2. It can be noticed that the optimization algorithm start-
ed from an initial section, given in Figure 6, with area of 3,960mm² 
and converged to an section 71.2% smaller than the starting section 
and 52.3% smaller in relation to the Salari and Spacone section.
Figure 8 shows the variations of the ultimate and service limit state 
constraints, flange and web slenderness constraints, in relation to 
the number of iterations. In this figure, ULS refers to the constraint 
given by the ultimate load, SLS refers to the constraint given by the 
service load, FS and AS make references to the flange and web 
slenderness constraint, respectively. It can be seen that the starting 
section has a slack of 122%, 73%, 6%, and 67% in relation to these 
restrictions, respectively. Note that the ultimate limit state verification 

is decisive when compared to the service limit state, since the opti-
mized section has a gap of 54% in relation to the service limit state, 
and no slack in relation to the ultimate limit state. It is also noticeable 
that the web slenderness presents enough slack at the beginning 
of the iterations, ending without slack, and the flange slenderness, 
presents a small slack throughout the iterative process.
The same analyzes made for the symmetrical I-shaped section 
were performed for the non-symmetric case and are presented be-
low. Figure 9 shows the response to the non-symmetric optimized 
section and it can be seen that the reinforced concrete section is 
equal to the Salari and Spacone section, as it should be, and that 
the non-symmetrical I-shaped section has a total area of 1,140 
mm2. In the same way as for the symmetric section, the optimi-
zation algorithm started from the section given by Figure 6 and 
converged to a section 71.2% smaller than the starting section and 
52.3% smaller than the Salari and Spacone section.
The figure of the variations of the constraints for the non-symmetric 
case is practically the same for the symmetric section and there-
fore is not presented.

4.1.2 Optimizing concrete slab

In this example, the same characteristics of the example analyzed 
in the previous sub-item will be considered, but any initial section 
will be defined and the optimization algorithm will provide a sym-
metrical I-shaped section equal to the authors section and will op-
timize the concrete slab section.
The initial section provided by the user is shown in Figure 10. As 
in the previous example, this section should satisfy only the re-
quirements of the limits dimensions. In this example, the section 
provided by the user meets all design constraints and is then taken 
as the starting section for the optimization algorithm.

Figure 8
Variation of the constraints in the optimization 
process (symmetric profile)

Figure 9
Optimized non-symmetric section obtained 
by the algorithm (dimensions in mm)

Table 2
Limit parameter for design variables (dimensions in mm and area in cm2)

Variables b h bf tf bw tw As1 As2

Lower limit 100 40 76.2 9.6 133.2 6.1 4.4 0
Upper limit 2000 250 1000 100 2000 100 5.4 0.01

Figure 10
Section defined by the user and initial section 
defined by the algorithm (dimensions in mm)
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The limits parameters for the design variables provided by the user 
are shown in the Table 2. As mentioned, these values will serve as 
limits for the design variables (lateral constraints), noting that the 
costs were defined so that the variables related to the steel profile 
(bf, tf, bw e tw) and reinforcement (As1 e As2) converge to their lower 
limit values.
In the assignment of the discrete values, the variation parameters 
provided by the user were 10 mm for dimension b, 5 mm for h and 
0.1 mm for dimensions bf, tf, bw and tw. Thus, the concrete slab 
height will be a discrete value with an accuracy of 5mm between 
the lower and upper limits parameters given in Table 2, that is, a 
discrete value in the list: 40, 45, 50, ..., 240, 245 , 250mm.
In Figure 11 the response obtained for this example is shown. In 
this figure it is observed that the reinforcement and I-shaped steel 
section are equal to Salari and Spacone section, as predicted, and 
the concrete section presents total area of 20,250 mm2, whereas 
the Salari and Spacone concrete section has an area of 36,600 
mm2. Thus, it is noted that the optimization algorithm started from 
any section given in Figure 6, with an area of 64,800mm2, and 
converged to a section 68.8% smaller than that the starting section 
and 44.6% smaller than the Salari and Spacone section.
It can be seen in Figure 12 that the starting section has a slack 
of 37%, 71%, 5%, and 61%, respectively, in relation to the ulti-
mate and service limit state constraints, and the flange and web 
slenderness constraint. It is verified in the same figure that, for 
the vertical displacement limit and the service load established 
equal to the previous sub-item, the ultimate limit state verifi-
cation is determinant when compared to the service limit state 
verification, since the optimized section has a slack of 28% for 
the service limit state.

4.2 Example 2

The composite floor of Figure 13 is formed by a concrete slab (fck 
= 20MPa) supported on three AR 350 steel beams (fy = 350 MPa) 
simply supported at the ends. For the definition of the ultimate and 
service load on the beams an variable action of 2kN/m2 (office 
floor) is considered, as well as a permanent action of self-weight of 
concrete slab of 3.8kN/m2 and of the steel beam of 0.8kN/m (self-
weight of the I-shaped profile per linear meter). It is considered that 
the central beam receives half of the loading of the floor and the 
other half is equally divided between the ends beams.
In this example the composite beam dimensions formed by the 
concrete slab and the central beam (B2 beam in Figure 13) will be 
determined in order to minimize a cost function related to the con-
crete, steel profile and reinforcement cost. The beam is given by 
a symmetrical I-shaped section, the reinforcement by 10mm CA50 
steel bars and the rectangular concrete slab with thickness to be 
determined and width given by the concept of effective width [22].
According to the data provided in the previous paragraphs, in Fig-
ure 13, and in the conditions of combinations of actions for verifi-
cation of the ultimate and service limit states [22], we arrive at the 
design value for ultimate and service loads given by 55.16kN/m 
and 30.7kN/m, respectively. According to this same design code 
[22] the effective width (b) is of 2.5m.
The materials non-linearity is represented by their stress-strain 
curves and the shear force-slip curve of the deformable connection. 

Figure 11
Optimized symmetric section obtained 
by the algorithm (dimensions in mm)

Figure 12
Variation of the constraints in the optimization 
process (concrete slab)

Figure 13
Composite floor formed by concrete slab 
and simply supported steel beams
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In this example the stress-strain curves shown in Figure 14 are used 
[21, 22]. For the shear force-slip curve of the deformable connection 
it is considered the use of stud bolt shear connectors of 19.1mm 
diameter uniformly spaced every 20cm. The connector steel has fy 
= 345MPa and fu = 415MPa. For more details on how to obtain this 
curve consult to the references [26, 27].

For numerical analysis, a discretization of the B2 composite beam 
of Figure 13 was made as follows: 4 beam elements to simulate 
the concrete beam, 4 beam elements to simulate the steel beam, 
and 4 interface elements to connect the beam elements and simu-
late the deformable connection.
In the definition of the objective function it is necessary that the 
user provides the concrete, steel profile and reinforcement cost. 
In this example, the values of R$350/m3, R$31,000R/m3, and 
R$50,000/m3 for concrete, steel profile and reinforcement materi-
als, respectively, were adopted.
The initial section provided by the user for this example is shown 
in Figure 15. The initial section must meet only the requirements 
of the limit dimensions. As in the other examples, if the flange and 
web slenderness constraints and the ultimate and service limit 
states constraints are not satisfied, the section is altered by the 
algorithm and has its dimensions enlarged in an iterative process 
until all constraints are satisfied. This section is taken as the start-
ing point for the optimization procedure. In this example, the initial 
section of Figure 15 did not meet the constraints and the section 
that was altered by the algorithm is shown in Figure 16.
The values provided by the user for the design variables are shown 
in Table 3. It is observed from this table that the variable b has a 
small variability and whatever its value within that variability the 
final dimension assigned will be the value of 2.5m. This is because 
in the process of transformation of this continuous variable into 
a discrete value a variation of 50mm is used. For the other vari-
ables, the variation parameters provided by the user are 5mm for 
h, 10mm for bf and bw, and 1.0mm for the dimensions of tf  and tw.
In this example, the algorithm will define a section with concrete 
slab width (b) equal to 2.5 m and the other dimensions will be de-
fined within the specified limits in order to minimize the objective 
function related to materials cost. The response obtained from this 

Figure 14
Constitutive laws used in this example: (a) 
concrete, (b) steel profile, (c) reinforcement and 
(d) interface connection

a

c

b

d

Figure 15
Section defined by the user (dimensions in mm)

Figure 16
Starting section defined by the algorithm 
(dimensions in mm)

Table 3
Limit parameter for design variables (dimensions in mm and area in cm2)

Variables b h bf tf bw tw As1 As2

Lower limit 2460 70 50 20 200 2 2.49 2.49
Upper limit 2500 250 1000 100 2000 100 20 20
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example, considering a symmetrical I-shaped section, is shown in 
Figure 17. It can be seen from this figure that the optimized sec-
tion presents the concrete slab width of 2.5m as desired. For the 
concrete slab thickness (h) and for the reinforcement (As1 and As2), 
its minimum limit values were defined.
Figure 18 below shows the variations of the constraints in rela-
tion to the number of iterations. It is observed from this figure that 
the starting section presents a slack of 35%, 9%, 0%, and 109%, 
respectively, in relation to the ultimate and service limit state con-
straints, and the flange and web slenderness constraint. In this 
figure it is observed that the ultimate limit state is determinant in 
design. In the iteration 38 the slacks in relation to the two limit 
states were zero, however, the slack of 45% in relation to the web 
slenderness allowed the continuation of the method providing a 
section with limit value for the web slenderness and 25% of slack 

for the service limit state. The flange slenderness presents without 
slack throughout the iterative process.
In Figure 19 is presented the variation of the composite beam materials 
cost during the iterative process of the method presented in this work. 
The starting section presents a cost of R$586.61/m while the optimized 
section presents a cost of R$265.01/m, a reduction of 54.8%.
The same analyzes made considering a symmetrical I-shaped sec-
tion were performed considering non-symmetrical I-shaped sec-
tion. The section defined by the user and the starting section of the 
algorithm are the same as the symmetric case. Table 4 presents 
the limit parameter defined by the user for the design variables.
The optimum non-symmetric section obtained by the algorithm 
is shown in Figure 20. In this figure it is observed that the upper 
flange is smaller than the lower flange, which is justified because 
the composite beam is subjected only to positive moments.

Table 4
Limit parameter for design variables (dimensions in mm and area in cm2)

Variables b h bf tf bw tw As1 As2

Lower limit 2460 70 50 20 200 2 2.49 2.49
Upper limit 2500 250 1000 100 2000 100 20 20

Figure 17
Optimum symmetric section obtained 
by the algorithm (dimensions in cm)

Figure 18
Variation of the constraints in the optimization 
process (symmetrical profile)

Figure 19
Variation of cost per linear meter of composite 
beam (symmetrical profile)

Figure 20
Optimum non-symmetric section obtained 
by the algorithm (dimensions in mm)
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The curves of the variation of the constraints and of the composite 
beam materials cost with the iterations is very similar to the symmetri-
cal case. The starting section presents a cost of R$586.61 while the 
optimized section presents a cost of R$251.12, a reduction of 57.2%. 
Compared with the symmetric case, there is a reduction of 5.2%.

5. Conclusion

This article consists of the implementation of an algorithm to define 
the dimensions of the symmetrical or non-symmetrical I-shaped 
steel profile, the dimensions of the rectangular concrete slab and 
the amount of reinforcement, so that the steel-concrete composite 
beam with partial interaction subject to simple bending meets the 
requirements of design code, minimizing an objective function de-
fined from the amount and cost of the materials.
The sequential linear programming method was used to solve the 
nonlinear problem of the calculation of the efforts in the composite 
section for different values of the design variables. At each step of 
the sequential process the Simplex method was used to define the 
next step in order to guarantee an advance towards the minimum 
point. With the efficiency of the formulations of the finite elements 
used, the method proposed for the search of the optimized sec-
tion had its efficiency duly proven from the results observed in the 
presented examples.
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