A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete

  • Paola Villalba Fiore UFRGS
  • Denise Bernaud Maghous UFRGS
  • Americo Campos Filho UFRGS

Abstract

This paper describes a numerical simulation with 3D finite elements of a tunnel. The viscoplastic law of Perzyna represents the rockmass behavior. The concrete, shotcrete or precast, is modeled as a viscoelastic material through the Maxwell and Kelvin chain models. Finite element simulations are performed by incorporating subroutines for viscoelastic concrete models in the ANSYS code. The method to simulate tunnel excavations is by activating and deactivating elements in sequential steps. In the first part of the paper two validations are performed. The analytical solution and the deformation achieved on the stabilization in the ANSYS code are compared with an unlined tunnel. A lined tunnel, with an elastic and viscoplastic rockmass combined with an elastic lining, is compared with the results of the GEOMEC91 code. In the second part, it is compared the same tunnel with two different concrete lining for two chain models. Finally, it is modeled the Kielder experimental tunnel, which in situ measured data is available.
Published
May 31, 2016
How to Cite
VILLALBA FIORE, Paola; MAGHOUS, Denise Bernaud; CAMPOS FILHO, Americo. A tridimensional finite element approach to model a tunnel with shotcrete and precast concrete. RIEM - IBRACON Structures and Materials Journal, [S.l.], v. 9, n. 3, may 2016. ISSN 1983-4195. Available at: <http://revistas.ibracon.org.br/index.php/riem/article/view/815>. Date accessed: 25 apr. 2019.
Section
Artigos