Development of artificial neural networks for interpreting ultrasonic pulse velocity of concrete
Resumen
Nondestructive Testing (NDT) techniques are useful tools for analyzing reinforced concrete (RC) structures. The use of Ultrassonic Pulse Velocity (UPV) measurements enables the monitoring of changes in some critical characteristics of concrete over the service life of a structure. Nonetheless, the current techniques for UPV data analysis are, on a large degree, based on the sensitivity of the professionals who apply these tests. For accurate diagnosis it is necessary to consider the various factors and conditions that can affect the results. To proper control and inspect RC facilities it is essential to develop appropriate strategies to make the task of data interpretation easier and more accurate. This work is based on the notion that using Artificial Neural Networks (ANNs) is a feasible way to generate workable estimation models correlating concrete characteristics, compacity and compressive strength. The study shows that this goal is achievable and indicates that neural models perform better than traditional statistical models.
Publicado
2011-10-10
Número
Sección
Artículos