Strict Standards: Declaration of SubmissionKeywordEntryDAO::getByControlledVocabId() should be compatible with ControlledVocabEntryDAO::getByControlledVocabId($controlledVocabId, $rangeInfo = NULL, $filter = NULL) in /home/revistas/public_html/lib/pkp/classes/submission/SubmissionKeywordEntryDAO.inc.php on line 20
Warning: Cannot modify header information - headers already sent by (output started at /home/revistas/public_html/lib/pkp/classes/submission/SubmissionKeywordEntryDAO.inc.php:20) in /home/revistas/public_html/lib/pkp/classes/template/PKPTemplateManager.inc.php on line 836
Warning: Cannot modify header information - headers already sent by (output started at /home/revistas/public_html/lib/pkp/classes/submission/SubmissionKeywordEntryDAO.inc.php:20) in /home/revistas/public_html/lib/pkp/classes/template/PKPTemplateManager.inc.php on line 837
Experimental evaluation of the prevention methods for the interface between masonry infill walls and concrete columns
| Revista IBRACON de Estruturas e Materiais
Experimental evaluation of the prevention methods for the interface between masonry infill walls and concrete columns
André Penteado Tramontin
Armando Lopes Moreno Junior
Clayton Reis Oliveira
Resumo
Cracks that form at the interfaces between masonry structures are common uncontrolled occurrences in buildings. Numerous methods have been proposed by the construction industry to address this problem. Cracks continuously form in the joints between concrete columns and masonry infill walls. In this study, the most common methods for preventing these types of cracks were evaluated in laboratory experiments. Column masonry models were constructed using different types of joints between concrete columns and masonry infill walls, such as steel bars and steel mesh. The efficiency of each type of joint method was evaluated by performing direct tensile tests (pullout tests) on the models and monitoring the evolution of the crack opening in the joint between the column and wall, as a function of load applied to the model. The results from this study indicate that the model composed of “electrowelded wire mesh without steel angles” is the best model for controlling cracking in the joints between concrete columns and masonry infill walls.