Strict Standards: Declaration of SubmissionKeywordEntryDAO::getByControlledVocabId() should be compatible with ControlledVocabEntryDAO::getByControlledVocabId($controlledVocabId, $rangeInfo = NULL, $filter = NULL) in /home/revistas/public_html/lib/pkp/classes/submission/SubmissionKeywordEntryDAO.inc.php on line 20
Warning: Cannot modify header information - headers already sent by (output started at /home/revistas/public_html/lib/pkp/classes/submission/SubmissionKeywordEntryDAO.inc.php:20) in /home/revistas/public_html/lib/pkp/classes/template/PKPTemplateManager.inc.php on line 836
Warning: Cannot modify header information - headers already sent by (output started at /home/revistas/public_html/lib/pkp/classes/submission/SubmissionKeywordEntryDAO.inc.php:20) in /home/revistas/public_html/lib/pkp/classes/template/PKPTemplateManager.inc.php on line 837
Smeared Crack Models for Reinforced Concrete Beams by Finite Element Method
| Revista IBRACON de Estruturas e Materiais
Smeared Crack Models for Reinforced Concrete Beams by Finite Element Method
Renato Gavazza Menin
Leandro Mouta Trautwein
Túlio Nogueira Bittencourt
Resumo
The main goal of the present work is to present a comparison between two different strategies for the computational simulation of reinforced concrete structures, both using smeared crack models to represent the behavior of the materials. As a first approach, a multidirectional smeared crack model available in DIANA has been adopted along with different softening rules for the cracked materials (brittle, linear, non-linear of Moelands-Reinhardt and Hordijk). Additionally, the Disturbed Stress Field Model – DSFM has also been adopted to model cracked concrete as an orthotropic material with smeared rotating cracks. The finite element codes DIANA and VecTor2 have been used to evaluate the performance of the different smeared crack models to predict the behavior of reinforced concrete beams subjected primarily to flexure.